Properties

Label 131.1.4.3a1.2-3.1.0a
Base 131.1.4.3a1.2
Degree \(3\)
e \(1\)
f \(3\)
c \(0\)

Related objects

Downloads

Learn more

Invariants

Residue field characteristic: $131$
Degree: $3$
Base field: 131.1.4.3a1.2
Ramification index $e$: $1$
Residue field degree $f$: $3$
Discriminant exponent $c$: $0$
Absolute Artin slopes: $[\ ]$
Swan slopes: $[\ ]$
Means: $\langle\ \rangle$
Rams: $(\ )$
Field count: $1$ (complete)
Ambiguity: $3$
Mass: $1$
Absolute Mass: $1/6$

Varying

These invariants are all associated to absolute extensions of $\Q_{ 131 }$ within this relative family, not the relative extension.

Galois group: $D_4 \times C_3$
Hidden Artin slopes: $[\ ]^{2}$
Indices of inseparability: $[0]$
Associated inertia: $[2]$
Jump Set: undefined

Fields


Showing all 1

  displayed columns for results
Label Polynomial $/ \Q_p$ Galois group $/ \Q_p$ Galois degree $/ \Q_p$ $\#\Aut(K/\Q_p)$ Artin slope content $/ \Q_p$ Swan slope content $/ \Q_p$ Hidden Artin slopes $/ \Q_p$ Hidden Swan slopes $/ \Q_p$ Ind. of Insep. $/ \Q_p$ Assoc. Inertia $/ \Q_p$ Resid. Poly Jump Set
131.3.4.9a1.1 $( x^{3} + 3 x + 129 )^{4} + 131 x$ $D_4 \times C_3$ (as 12T14) $24$ $6$ $[\ ]_{4}^{6}$ $[\ ]_{4}^{6}$ $[\ ]^{2}$ $[\ ]^{2}$ $[0]$ $[2]$ $z^3 + 4 z^2 + 6 z + 4$ undefined
  displayed columns for results