Invariants
Residue field characteristic: | $11$ |
Degree: | $2$ |
Base field: | 11.1.10.9a1.5 |
Ramification index $e$: | $1$ |
Residue field degree $f$: | $2$ |
Discriminant exponent $c$: | $0$ |
Absolute Artin slopes: | $[\ ]$ |
Swan slopes: | $[\ ]$ |
Means: | $\langle\ \rangle$ |
Rams: | $(\ )$ |
Field count: | $1$ (complete) |
Ambiguity: | $2$ |
Mass: | $1$ |
Absolute Mass: | $1/20$ |
Varying
These invariants are all associated to absolute extensions of $\Q_{ 11 }$ within this relative family, not the relative extension.
Galois group: | $C_2\times C_{10}$ |
Hidden Artin slopes: | $[\ ]$ |
Indices of inseparability: | $[0]$ |
Associated inertia: | $[1]$ |
Jump Set: | undefined |
Fields
Showing all 1
Download displayed columns for resultsLabel | Polynomial $/ \Q_p$ | Galois group $/ \Q_p$ | Galois degree $/ \Q_p$ | $\#\Aut(K/\Q_p)$ | Hidden Artin slopes $/ \Q_p$ | Ind. of Insep. $/ \Q_p$ | Assoc. Inertia $/ \Q_p$ | Jump Set |
---|---|---|---|---|---|---|---|---|
11.2.10.18a1.8 | $( x^{2} + 7 x + 2 )^{10} + 55 x + 44$ | $C_2\times C_{10}$ (as 20T3) | $20$ | $20$ | $[\ ]$ | $[0]$ | $[1]$ | undefined |