Properties

Label 11.1.10.9a1.5-2.1.0a
Base 11.1.10.9a1.5
Degree \(2\)
e \(1\)
f \(2\)
c \(0\)

Related objects

Downloads

Learn more

Invariants

Residue field characteristic: $11$
Degree: $2$
Base field: 11.1.10.9a1.5
Ramification index $e$: $1$
Residue field degree $f$: $2$
Discriminant exponent $c$: $0$
Absolute Artin slopes: $[\ ]$
Swan slopes: $[\ ]$
Means: $\langle\ \rangle$
Rams: $(\ )$
Field count: $1$ (complete)
Ambiguity: $2$
Mass: $1$
Absolute Mass: $1/20$

Varying

These invariants are all associated to absolute extensions of $\Q_{ 11 }$ within this relative family, not the relative extension.

Galois group: $C_2\times C_{10}$
Hidden Artin slopes: $[\ ]$
Indices of inseparability: $[0]$
Associated inertia: $[1]$
Jump Set: undefined

Fields


Showing all 1

  displayed columns for results
Label Polynomial $/ \Q_p$ Galois group $/ \Q_p$ Galois degree $/ \Q_p$ $\#\Aut(K/\Q_p)$ Artin slope content $/ \Q_p$ Swan slope content $/ \Q_p$ Hidden Artin slopes $/ \Q_p$ Hidden Swan slopes $/ \Q_p$ Ind. of Insep. $/ \Q_p$ Assoc. Inertia $/ \Q_p$ Resid. Poly Jump Set
11.2.10.18a1.8 $( x^{2} + 7 x + 2 )^{10} + 55 x + 44$ $C_2\times C_{10}$ (as 20T3) $20$ $20$ $[\ ]_{10}^{2}$ $[\ ]_{10}^{2}$ $[\ ]$ $[\ ]$ $[0]$ $[1]$ $z^9 + 10 z^8 + z^7 + 10 z^6 + z^5 + 10 z^4 + z^3 + 10 z^2 + z + 10$ undefined
  displayed columns for results