Defining polynomial
$x^{14} + 109d_{0}$ |
Invariants
Residue field characteristic: | $109$ |
Degree: | $14$ |
Base field: | $\Q_{109}$ |
Ramification index $e$: | $14$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $13$ |
Artin slopes: | $[\ ]$ |
Swan slopes: | $[\ ]$ |
Means: | $\langle\ \rangle$ |
Rams: | $(\ )$ |
Field count: | $2$ (complete) |
Ambiguity: | $2$ |
Mass: | $1$ |
Absolute Mass: | $1$ |
Varying
Indices of inseparability: | $[0]$ |
Associated inertia: | $[3]$ |
Jump Set: | undefined |
Galois groups and Hidden Artin slopes
Fields
Showing all 2
Download displayed columns for resultsLabel | Polynomial | Galois group | Galois degree | $\#\Aut(K/\Q_p)$ | Hidden Artin slopes | Ind. of Insep. | Assoc. Inertia | Jump Set |
---|---|---|---|---|---|---|---|---|
109.1.14.13a1.1 | $x^{14} + 109$ | $(C_7:C_3) \times C_2$ (as 14T5) | $42$ | $2$ | $[\ ]^{3}$ | $[0]$ | $[3]$ | undefined |
109.1.14.13a1.2 | $x^{14} + 654$ | $(C_7:C_3) \times C_2$ (as 14T5) | $42$ | $2$ | $[\ ]^{3}$ | $[0]$ | $[3]$ | undefined |