Properties

Label 103.3.1.0a1.1-1.7.6a
Base 103.3.1.0a1.1
Degree \(7\)
e \(7\)
f \(1\)
c \(6\)

Related objects

Downloads

Learn more

Defining polynomial

$x^{7} + 103$

Invariants

Residue field characteristic: $103$
Degree: $7$
Base field: 103.3.1.0a1.1
Ramification index $e$: $7$
Residue field degree $f$: $1$
Discriminant exponent $c$: $6$
Absolute Artin slopes: $[\ ]$
Swan slopes: $[\ ]$
Means: $\langle\ \rangle$
Rams: $(\ )$
Field count: $1$ (complete)
Ambiguity: $1$
Mass: $1$
Absolute Mass: $1/3$

Varying

These invariants are all associated to absolute extensions of $\Q_{ 103 }$ within this relative family, not the relative extension.

Galois group: $F_7$
Hidden Artin slopes: $[\ ]^{2}$
Indices of inseparability: $[0]$
Associated inertia: $[2]$
Jump Set: undefined

Fields


Showing all 1

  displayed columns for results
Label Polynomial $/ \Q_p$ Galois group $/ \Q_p$ Galois degree $/ \Q_p$ $\#\Aut(K/\Q_p)$ Artin slope content $/ \Q_p$ Swan slope content $/ \Q_p$ Hidden Artin slopes $/ \Q_p$ Hidden Swan slopes $/ \Q_p$ Ind. of Insep. $/ \Q_p$ Assoc. Inertia $/ \Q_p$ Resid. Poly Jump Set
103.3.7.18a1.1 $( x^{3} + 2 x + 98 )^{7} + 103$ $F_7$ (as 21T4) $42$ $3$ $[\ ]_{7}^{6}$ $[\ ]_{7}^{6}$ $[\ ]^{2}$ $[\ ]^{2}$ $[0]$ $[2]$ $z^6 + 7 z^5 + 21 z^4 + 35 z^3 + 35 z^2 + 21 z + 7$ undefined
  displayed columns for results