Properties

Label 103.3.1.0a1.1-1.5.4a
Base 103.3.1.0a1.1
Degree \(5\)
e \(5\)
f \(1\)
c \(4\)

Related objects

Downloads

Learn more

Defining polynomial

$x^{5} + 103$

Invariants

Residue field characteristic: $103$
Degree: $5$
Base field: 103.3.1.0a1.1
Ramification index $e$: $5$
Residue field degree $f$: $1$
Discriminant exponent $c$: $4$
Absolute Artin slopes: $[\ ]$
Swan slopes: $[\ ]$
Means: $\langle\ \rangle$
Rams: $(\ )$
Field count: $1$ (complete)
Ambiguity: $1$
Mass: $1$
Absolute Mass: $1/3$

Varying

These invariants are all associated to absolute extensions of $\Q_{ 103 }$ within this relative family, not the relative extension.

Galois group: $F_5\times C_3$
Hidden Artin slopes: $[\ ]^{4}$
Indices of inseparability: $[0]$
Associated inertia: $[4]$
Jump Set: undefined

Fields


Showing all 1

  displayed columns for results
Label Polynomial $/ \Q_p$ Galois group $/ \Q_p$ Galois degree $/ \Q_p$ $\#\Aut(K/\Q_p)$ Artin slope content $/ \Q_p$ Swan slope content $/ \Q_p$ Hidden Artin slopes $/ \Q_p$ Hidden Swan slopes $/ \Q_p$ Ind. of Insep. $/ \Q_p$ Assoc. Inertia $/ \Q_p$ Resid. Poly Jump Set
103.3.5.12a1.1 $( x^{3} + 2 x + 98 )^{5} + 103$ $F_5\times C_3$ (as 15T8) $60$ $3$ $[\ ]_{5}^{12}$ $[\ ]_{5}^{12}$ $[\ ]^{4}$ $[\ ]^{4}$ $[0]$ $[4]$ $z^4 + 5 z^3 + 10 z^2 + 10 z + 5$ undefined
  displayed columns for results