Properties

Label 103.3.1.0a1.1-1.4.3a
Base 103.3.1.0a1.1
Degree \(4\)
e \(4\)
f \(1\)
c \(3\)

Related objects

Downloads

Learn more

Defining polynomial

$x^{4} + 103d_{0}$

Invariants

Residue field characteristic: $103$
Degree: $4$
Base field: 103.3.1.0a1.1
Ramification index $e$: $4$
Residue field degree $f$: $1$
Discriminant exponent $c$: $3$
Absolute Artin slopes: $[\ ]$
Swan slopes: $[\ ]$
Means: $\langle\ \rangle$
Rams: $(\ )$
Field count: $2$ (complete)
Ambiguity: $2$
Mass: $1$
Absolute Mass: $1/3$

Varying

These invariants are all associated to absolute extensions of $\Q_{ 103 }$ within this relative family, not the relative extension.

Galois group: $D_4 \times C_3$
Hidden Artin slopes: $[\ ]^{2}$
Indices of inseparability: $[0]$
Associated inertia: $[2]$
Jump Set: undefined

Fields


Showing all 2

  displayed columns for results
Label Polynomial $/ \Q_p$ Galois group $/ \Q_p$ Galois degree $/ \Q_p$ $\#\Aut(K/\Q_p)$ Artin slope content $/ \Q_p$ Swan slope content $/ \Q_p$ Hidden Artin slopes $/ \Q_p$ Hidden Swan slopes $/ \Q_p$ Ind. of Insep. $/ \Q_p$ Assoc. Inertia $/ \Q_p$ Resid. Poly Jump Set
103.3.4.9a1.1 $( x^{3} + 2 x + 98 )^{4} + 103 x$ $D_4 \times C_3$ (as 12T14) $24$ $6$ $[\ ]_{4}^{6}$ $[\ ]_{4}^{6}$ $[\ ]^{2}$ $[\ ]^{2}$ $[0]$ $[2]$ $z^3 + 4 z^2 + 6 z + 4$ undefined
103.3.4.9a1.2 $( x^{3} + 2 x + 98 )^{4} + 103$ $D_4 \times C_3$ (as 12T14) $24$ $6$ $[\ ]_{4}^{6}$ $[\ ]_{4}^{6}$ $[\ ]^{2}$ $[\ ]^{2}$ $[0]$ $[2]$ $z^3 + 4 z^2 + 6 z + 4$ undefined
  displayed columns for results