| Label | $p$ | $n$ | $n_0$ | $n_{\mathrm{abs}}$ | $f$ | $f_0$ | $f_{\mathrm{abs}}$ | $e$ | $e_0$ | $e_{\mathrm{abs}}$ | $c$ | $c_0$ | $c_{\mathrm{abs}}$ | Base | Abs. Artin slopes | Swan slopes | Means | Rams | Generic poly | Ambiguity | Field count | Mass | Mass (absolute) | Mass stored | Mass found | Wild segments | 
      
      
              | 3.1.15.29a1.16-2.1.0a | $3$ | $2$ | $15$ | $30$ | $2$ | $1$ | $2$ | $1$ | $15$ | $15$ | $0$ | $29$ | $30$ | 3.1.15.29a1.16 | $[\frac{5}{2}]$ | $[ ]$ | $\langle \rangle$ | $( )$ | $x$ | $2$ | $0$ | $1$ | $1/2$ | $0$ | $0\%$ | $0$ | 
      
              | 3.1.15.29a1.16-1.2.1a | $3$ | $2$ | $15$ | $30$ | $1$ | $1$ | $1$ | $2$ | $15$ | $30$ | $1$ | $29$ | $16$ | 3.1.15.29a1.16 | $[\frac{5}{2}]$ | $[ ]$ | $\langle \rangle$ | $( )$ | $x^2 + d_{0} \pi$ | $2$ | $0$ | $1$ | $1$ | $0$ | $0\%$ | $0$ | 
      
              | 3.1.15.29a1.16-3.1.0a | $3$ | $3$ | $15$ | $45$ | $3$ | $1$ | $3$ | $1$ | $15$ | $15$ | $0$ | $29$ | $45$ | 3.1.15.29a1.16 | $[\frac{5}{2}]$ | $[ ]$ | $\langle \rangle$ | $( )$ | $x$ | $3$ | $0$ | $1$ | $1/3$ | $0$ | $0\%$ | $0$ | 
      
              | 3.1.15.29a1.16-1.3.3a | $3$ | $3$ | $15$ | $45$ | $1$ | $1$ | $1$ | $3$ | $15$ | $45$ | $3$ | $29$ | $18$ | 3.1.15.29a1.16 | $[\frac{11}{10}, \frac{5}{2}]$ | $[\frac{1}{2}]$ | $\langle\frac{1}{3}\rangle$ | $(\frac{1}{2})$ | $x^3 + a_{1} \pi x + \pi$ | $1$ | $0$ | $2$ | $2$ | $0$ | $0\%$ | $1$ | 
      
              | 3.1.15.29a1.16-1.3.4a | $3$ | $3$ | $15$ | $45$ | $1$ | $1$ | $1$ | $3$ | $15$ | $45$ | $4$ | $29$ | $19$ | 3.1.15.29a1.16 | $[\frac{6}{5}, \frac{5}{2}]$ | $[1]$ | $\langle\frac{2}{3}\rangle$ | $(1)$ | $x^3 + a_{2} \pi x^2 + c_{3} \pi^2 + \pi$ | $3$ | $0$ | $2$ | $2$ | $0$ | $0\%$ | $1$ | 
      
              | 3.1.15.29a1.16-1.3.6a | $3$ | $3$ | $15$ | $45$ | $1$ | $1$ | $1$ | $3$ | $15$ | $45$ | $6$ | $29$ | $21$ | 3.1.15.29a1.16 | $[\frac{7}{5}, \frac{5}{2}]$ | $[2]$ | $\langle\frac{4}{3}\rangle$ | $(2)$ | $x^3 + b_{5} \pi^2 x^2 + a_{4} \pi^2 x + c_{6} \pi^3 + \pi$ | $3$ | $0$ | $6$ | $6$ | $0$ | $0\%$ | $1$ | 
      
              | 3.1.15.29a1.16-1.3.7a | $3$ | $3$ | $15$ | $45$ | $1$ | $1$ | $1$ | $3$ | $15$ | $45$ | $7$ | $29$ | $22$ | 3.1.15.29a1.16 | $[\frac{3}{2}, \frac{5}{2}]$ | $[\frac{5}{2}]$ | $\langle\frac{5}{3}\rangle$ | $(\frac{5}{2})$ | $x^3 + a_{5} \pi^2 x^2 + b_{7} \pi^3 x + \pi$ | $1$ | $0$ | $6$ | $6$ | $0$ | $0\%$ | $1$ | 
      
              | 3.1.15.29a1.16-1.3.9a | $3$ | $3$ | $15$ | $45$ | $1$ | $1$ | $1$ | $3$ | $15$ | $45$ | $9$ | $29$ | $24$ | 3.1.15.29a1.16 | $[\frac{17}{10}, \frac{5}{2}]$ | $[\frac{7}{2}]$ | $\langle\frac{7}{3}\rangle$ | $(\frac{7}{2})$ | $x^3 + b_{8} \pi^3 x^2 + (b_{10} \pi^4 + a_{7} \pi^3) x + \pi$ | $1$ | $0$ | $18$ | $18$ | $0$ | $0\%$ | $1$ | 
      
              | 3.1.15.29a1.16-1.3.10a | $3$ | $3$ | $15$ | $45$ | $1$ | $1$ | $1$ | $3$ | $15$ | $45$ | $10$ | $29$ | $25$ | 3.1.15.29a1.16 | $[\frac{9}{5}, \frac{5}{2}]$ | $[4]$ | $\langle\frac{8}{3}\rangle$ | $(4)$ | $x^3 + (b_{11} \pi^4 + a_{8} \pi^3) x^2 + b_{10} \pi^4 x + c_{12} \pi^5 + \pi$ | $3$ | $0$ | $18$ | $18$ | $0$ | $0\%$ | $1$ | 
      
              | 3.1.15.29a1.16-1.3.12a | $3$ | $3$ | $15$ | $45$ | $1$ | $1$ | $1$ | $3$ | $15$ | $45$ | $12$ | $29$ | $27$ | 3.1.15.29a1.16 | $[2, \frac{5}{2}]$ | $[5]$ | $\langle\frac{10}{3}\rangle$ | $(5)$ | $x^3 + (b_{14} \pi^5 + b_{11} \pi^4) x^2 + (b_{13} \pi^5 + a_{10} \pi^4) x + c_{15} \pi^6 + \pi$ | $3$ | $0$ | $54$ | $54$ | $0$ | $0\%$ | $1$ | 
      
              | 3.1.15.29a1.16-1.3.13a | $3$ | $3$ | $15$ | $45$ | $1$ | $1$ | $1$ | $3$ | $15$ | $45$ | $13$ | $29$ | $28$ | 3.1.15.29a1.16 | $[\frac{21}{10}, \frac{5}{2}]$ | $[\frac{11}{2}]$ | $\langle\frac{11}{3}\rangle$ | $(\frac{11}{2})$ | $x^3 + (b_{14} \pi^5 + a_{11} \pi^4) x^2 + (b_{16} \pi^6 + b_{13} \pi^5) x + \pi$ | $1$ | $0$ | $54$ | $54$ | $0$ | $0\%$ | $1$ | 
      
              | 3.1.15.29a1.16-1.3.15a | $3$ | $3$ | $15$ | $45$ | $1$ | $1$ | $1$ | $3$ | $15$ | $45$ | $15$ | $29$ | $30$ | 3.1.15.29a1.16 | $[\frac{23}{10}, \frac{5}{2}]$ | $[\frac{13}{2}]$ | $\langle\frac{13}{3}\rangle$ | $(\frac{13}{2})$ | $x^3 + (b_{17} \pi^6 + b_{14} \pi^5) x^2 + (b_{19} \pi^7 + b_{16} \pi^6 + a_{13} \pi^5) x + \pi$ | $1$ | $0$ | $162$ | $162$ | $0$ | $0\%$ | $1$ | 
      
              | 3.1.15.29a1.16-1.3.16a | $3$ | $3$ | $15$ | $45$ | $1$ | $1$ | $1$ | $3$ | $15$ | $45$ | $16$ | $29$ | $31$ | 3.1.15.29a1.16 | $[\frac{12}{5}, \frac{5}{2}]$ | $[7]$ | $\langle\frac{14}{3}\rangle$ | $(7)$ | $x^3 + (b_{20} \pi^7 + b_{17} \pi^6 + a_{14} \pi^5) x^2 + (b_{19} \pi^7 + b_{16} \pi^6) x + c_{21} \pi^8 + \pi$ | $3$ | $0$ | $162$ | $162$ | $0$ | $0\%$ | $1$ | 
      
              | 3.1.15.29a1.16-1.3.18a | $3$ | $3$ | $15$ | $45$ | $1$ | $1$ | $1$ | $3$ | $15$ | $45$ | $18$ | $29$ | $33$ | 3.1.15.29a1.16 | $[\frac{5}{2}, \frac{38}{15}]$ | $[8]$ | $\langle\frac{16}{3}\rangle$ | $(8)$ | $x^3 + (b_{23} \pi^8 + b_{20} \pi^7 + b_{17} \pi^6) x^2 + (b_{22} \pi^8 + b_{19} \pi^7 + a_{16} \pi^6) x + c_{24} \pi^9 + \pi$ | $3$ | $0$ | $486$ | $486$ | $0$ | $0\%$ | $1$ | 
      
              | 3.1.15.29a1.16-1.3.19a | $3$ | $3$ | $15$ | $45$ | $1$ | $1$ | $1$ | $3$ | $15$ | $45$ | $19$ | $29$ | $34$ | 3.1.15.29a1.16 | $[\frac{5}{2}, \frac{77}{30}]$ | $[\frac{17}{2}]$ | $\langle\frac{17}{3}\rangle$ | $(\frac{17}{2})$ | $x^3 + (b_{23} \pi^8 + b_{20} \pi^7 + a_{17} \pi^6) x^2 + (b_{25} \pi^9 + b_{22} \pi^8 + b_{19} \pi^7) x + \pi$ | $1$ | $0$ | $486$ | $486$ | $0$ | $0\%$ | $1$ | 
      
              | 3.1.15.29a1.16-1.3.21a | $3$ | $3$ | $15$ | $45$ | $1$ | $1$ | $1$ | $3$ | $15$ | $45$ | $21$ | $29$ | $36$ | 3.1.15.29a1.16 | $[\frac{5}{2}, \frac{79}{30}]$ | $[\frac{19}{2}]$ | $\langle\frac{19}{3}\rangle$ | $(\frac{19}{2})$ | $x^3 + (b_{26} \pi^9 + b_{23} \pi^8 + b_{20} \pi^7) x^2 + (b_{28} \pi^{10} + b_{25} \pi^9 + b_{22} \pi^8 + a_{19} \pi^7) x + \pi$ | $1$ | $0$ | $1458$ | $1458$ | $0$ | $0\%$ | $1$ | 
      
              | 3.1.15.29a1.16-1.3.22a | $3$ | $3$ | $15$ | $45$ | $1$ | $1$ | $1$ | $3$ | $15$ | $45$ | $22$ | $29$ | $37$ | 3.1.15.29a1.16 | $[\frac{5}{2}, \frac{8}{3}]$ | $[10]$ | $\langle\frac{20}{3}\rangle$ | $(10)$ | $x^3 + (b_{29} \pi^{10} + b_{26} \pi^9 + b_{23} \pi^8 + a_{20} \pi^7) x^2 + (b_{28} \pi^{10} + b_{25} \pi^9 + b_{22} \pi^8) x + c_{30} \pi^{11} + \pi$ | $3$ | $0$ | $1458$ | $1458$ | $0$ | $0\%$ | $1$ | 
      
              | 3.1.15.29a1.16-1.3.24a | $3$ | $3$ | $15$ | $45$ | $1$ | $1$ | $1$ | $3$ | $15$ | $45$ | $24$ | $29$ | $39$ | 3.1.15.29a1.16 | $[\frac{5}{2}, \frac{41}{15}]$ | $[11]$ | $\langle\frac{22}{3}\rangle$ | $(11)$ | $x^3 + (b_{32} \pi^{11} + b_{29} \pi^{10} + b_{26} \pi^9 + b_{23} \pi^8) x^2 + (b_{31} \pi^{11} + b_{28} \pi^{10} + b_{25} \pi^9 + a_{22} \pi^8) x + c_{33} \pi^{12} + \pi$ | $3$ | $0$ | $4374$ | $4374$ | $0$ | $0\%$ | $1$ | 
      
              | 3.1.15.29a1.16-1.3.25a | $3$ | $3$ | $15$ | $45$ | $1$ | $1$ | $1$ | $3$ | $15$ | $45$ | $25$ | $29$ | $40$ | 3.1.15.29a1.16 | $[\frac{5}{2}, \frac{83}{30}]$ | $[\frac{23}{2}]$ | $\langle\frac{23}{3}\rangle$ | $(\frac{23}{2})$ | $x^3 + (b_{32} \pi^{11} + b_{29} \pi^{10} + b_{26} \pi^9 + a_{23} \pi^8) x^2 + (b_{34} \pi^{12} + b_{31} \pi^{11} + b_{28} \pi^{10} + b_{25} \pi^9) x + \pi$ | $1$ | $0$ | $4374$ | $4374$ | $0$ | $0\%$ | $1$ | 
      
              | 3.1.15.29a1.16-1.3.27a | $3$ | $3$ | $15$ | $45$ | $1$ | $1$ | $1$ | $3$ | $15$ | $45$ | $27$ | $29$ | $42$ | 3.1.15.29a1.16 | $[\frac{5}{2}, \frac{17}{6}]$ | $[\frac{25}{2}]$ | $\langle\frac{25}{3}\rangle$ | $(\frac{25}{2})$ | $x^3 + (b_{35} \pi^{12} + b_{32} \pi^{11} + b_{29} \pi^{10} + b_{26} \pi^9) x^2 + (b_{37} \pi^{13} + b_{34} \pi^{12} + b_{31} \pi^{11} + b_{28} \pi^{10} + a_{25} \pi^9) x + \pi$ | $1$ | $0$ | $13122$ | $13122$ | $0$ | $0\%$ | $1$ | 
      
              | 3.1.15.29a1.16-1.3.28a | $3$ | $3$ | $15$ | $45$ | $1$ | $1$ | $1$ | $3$ | $15$ | $45$ | $28$ | $29$ | $43$ | 3.1.15.29a1.16 | $[\frac{5}{2}, \frac{43}{15}]$ | $[13]$ | $\langle\frac{26}{3}\rangle$ | $(13)$ | $x^3 + (b_{38} \pi^{13} + b_{35} \pi^{12} + b_{32} \pi^{11} + b_{29} \pi^{10} + a_{26} \pi^9) x^2 + (b_{37} \pi^{13} + b_{34} \pi^{12} + b_{31} \pi^{11} + b_{28} \pi^{10}) x + c_{39} \pi^{14} + \pi$ | $3$ | $0$ | $13122$ | $13122$ | $0$ | $0\%$ | $1$ | 
      
              | 3.1.15.29a1.16-1.3.30a | $3$ | $3$ | $15$ | $45$ | $1$ | $1$ | $1$ | $3$ | $15$ | $45$ | $30$ | $29$ | $45$ | 3.1.15.29a1.16 | $[\frac{5}{2}, \frac{44}{15}]$ | $[14]$ | $\langle\frac{28}{3}\rangle$ | $(14)$ | $x^3 + (b_{41} \pi^{14} + b_{38} \pi^{13} + b_{35} \pi^{12} + b_{32} \pi^{11} + b_{29} \pi^{10}) x^2 + (b_{40} \pi^{14} + b_{37} \pi^{13} + b_{34} \pi^{12} + b_{31} \pi^{11} + a_{28} \pi^{10}) x + c_{42} \pi^{15} + \pi$ | $3$ | $0$ | $39366$ | $39366$ | $0$ | $0\%$ | $1$ | 
      
              | 3.1.15.29a1.16-1.3.31a | $3$ | $3$ | $15$ | $45$ | $1$ | $1$ | $1$ | $3$ | $15$ | $45$ | $31$ | $29$ | $46$ | 3.1.15.29a1.16 | $[\frac{5}{2}, \frac{89}{30}]$ | $[\frac{29}{2}]$ | $\langle\frac{29}{3}\rangle$ | $(\frac{29}{2})$ | $x^3 + (b_{41} \pi^{14} + b_{38} \pi^{13} + b_{35} \pi^{12} + b_{32} \pi^{11} + a_{29} \pi^{10}) x^2 + (b_{43} \pi^{15} + b_{40} \pi^{14} + b_{37} \pi^{13} + b_{34} \pi^{12} + b_{31} \pi^{11}) x + \pi$ | $1$ | $0$ | $39366$ | $39366$ | $0$ | $0\%$ | $1$ | 
      
              | 3.1.15.29a1.16-1.3.33a | $3$ | $3$ | $15$ | $45$ | $1$ | $1$ | $1$ | $3$ | $15$ | $45$ | $33$ | $29$ | $48$ | 3.1.15.29a1.16 | $[\frac{5}{2}, \frac{91}{30}]$ | $[\frac{31}{2}]$ | $\langle\frac{31}{3}\rangle$ | $(\frac{31}{2})$ | $x^3 + (b_{44} \pi^{15} + b_{41} \pi^{14} + b_{38} \pi^{13} + b_{35} \pi^{12} + b_{32} \pi^{11}) x^2 + (b_{46} \pi^{16} + b_{43} \pi^{15} + b_{40} \pi^{14} + b_{37} \pi^{13} + b_{34} \pi^{12} + a_{31} \pi^{11}) x + \pi$ | $1$ | $0$ | $118098$ | $118098$ | $0$ | $0\%$ | $1$ | 
      
              | 3.1.15.29a1.16-1.3.34a | $3$ | $3$ | $15$ | $45$ | $1$ | $1$ | $1$ | $3$ | $15$ | $45$ | $34$ | $29$ | $49$ | 3.1.15.29a1.16 | $[\frac{5}{2}, \frac{46}{15}]$ | $[16]$ | $\langle\frac{32}{3}\rangle$ | $(16)$ | $x^3 + (b_{47} \pi^{16} + b_{44} \pi^{15} + b_{41} \pi^{14} + b_{38} \pi^{13} + b_{35} \pi^{12} + a_{32} \pi^{11}) x^2 + (b_{46} \pi^{16} + b_{43} \pi^{15} + b_{40} \pi^{14} + b_{37} \pi^{13} + b_{34} \pi^{12}) x + c_{48} \pi^{17} + \pi$ | $3$ | $0$ | $118098$ | $118098$ | $0$ | $0\%$ | $1$ | 
      
              | 3.1.15.29a1.16-1.3.36a | $3$ | $3$ | $15$ | $45$ | $1$ | $1$ | $1$ | $3$ | $15$ | $45$ | $36$ | $29$ | $51$ | 3.1.15.29a1.16 | $[\frac{5}{2}, \frac{47}{15}]$ | $[17]$ | $\langle\frac{34}{3}\rangle$ | $(17)$ | $x^3 + (b_{50} \pi^{17} + b_{47} \pi^{16} + b_{44} \pi^{15} + b_{41} \pi^{14} + b_{38} \pi^{13} + b_{35} \pi^{12}) x^2 + (b_{49} \pi^{17} + b_{46} \pi^{16} + b_{43} \pi^{15} + b_{40} \pi^{14} + b_{37} \pi^{13} + a_{34} \pi^{12}) x + c_{51} \pi^{18} + \pi$ | $3$ | $0$ | $354294$ | $354294$ | $0$ | $0\%$ | $1$ | 
      
              | 3.1.15.29a1.16-1.3.37a | $3$ | $3$ | $15$ | $45$ | $1$ | $1$ | $1$ | $3$ | $15$ | $45$ | $37$ | $29$ | $52$ | 3.1.15.29a1.16 | $[\frac{5}{2}, \frac{19}{6}]$ | $[\frac{35}{2}]$ | $\langle\frac{35}{3}\rangle$ | $(\frac{35}{2})$ | $x^3 + (b_{50} \pi^{17} + b_{47} \pi^{16} + b_{44} \pi^{15} + b_{41} \pi^{14} + b_{38} \pi^{13} + a_{35} \pi^{12}) x^2 + (b_{52} \pi^{18} + b_{49} \pi^{17} + b_{46} \pi^{16} + b_{43} \pi^{15} + b_{40} \pi^{14} + b_{37} \pi^{13}) x + \pi$ | $1$ | $0$ | $354294$ | $354294$ | $0$ | $0\%$ | $1$ | 
      
              | 3.1.15.29a1.16-1.3.39a | $3$ | $3$ | $15$ | $45$ | $1$ | $1$ | $1$ | $3$ | $15$ | $45$ | $39$ | $29$ | $54$ | 3.1.15.29a1.16 | $[\frac{5}{2}, \frac{97}{30}]$ | $[\frac{37}{2}]$ | $\langle\frac{37}{3}\rangle$ | $(\frac{37}{2})$ | $x^3 + (b_{53} \pi^{18} + b_{50} \pi^{17} + b_{47} \pi^{16} + b_{44} \pi^{15} + b_{41} \pi^{14} + b_{38} \pi^{13}) x^2 + (b_{55} \pi^{19} + b_{52} \pi^{18} + b_{49} \pi^{17} + b_{46} \pi^{16} + b_{43} \pi^{15} + b_{40} \pi^{14} + a_{37} \pi^{13}) x + \pi$ | $1$ | $0$ | $1062882$ | $1062882$ | $0$ | $0\%$ | $1$ | 
      
              | 3.1.15.29a1.16-1.3.40a | $3$ | $3$ | $15$ | $45$ | $1$ | $1$ | $1$ | $3$ | $15$ | $45$ | $40$ | $29$ | $55$ | 3.1.15.29a1.16 | $[\frac{5}{2}, \frac{49}{15}]$ | $[19]$ | $\langle\frac{38}{3}\rangle$ | $(19)$ | $x^3 + (b_{56} \pi^{19} + b_{53} \pi^{18} + b_{50} \pi^{17} + b_{47} \pi^{16} + b_{44} \pi^{15} + b_{41} \pi^{14} + a_{38} \pi^{13}) x^2 + (b_{55} \pi^{19} + b_{52} \pi^{18} + b_{49} \pi^{17} + b_{46} \pi^{16} + b_{43} \pi^{15} + b_{40} \pi^{14}) x + c_{57} \pi^{20} + \pi$ | $3$ | $0$ | $1062882$ | $1062882$ | $0$ | $0\%$ | $1$ | 
      
              | 3.1.15.29a1.16-1.3.42a | $3$ | $3$ | $15$ | $45$ | $1$ | $1$ | $1$ | $3$ | $15$ | $45$ | $42$ | $29$ | $57$ | 3.1.15.29a1.16 | $[\frac{5}{2}, \frac{10}{3}]$ | $[20]$ | $\langle\frac{40}{3}\rangle$ | $(20)$ | $x^3 + (b_{59} \pi^{20} + b_{56} \pi^{19} + b_{53} \pi^{18} + b_{50} \pi^{17} + b_{47} \pi^{16} + b_{44} \pi^{15} + b_{41} \pi^{14}) x^2 + (b_{58} \pi^{20} + b_{55} \pi^{19} + b_{52} \pi^{18} + b_{49} \pi^{17} + b_{46} \pi^{16} + b_{43} \pi^{15} + a_{40} \pi^{14}) x + c_{60} \pi^{21} + \pi$ | $3$ | $0$ | $3188646$ | $3188646$ | $0$ | $0\%$ | $1$ | 
      
              | 3.1.15.29a1.16-1.3.43a | $3$ | $3$ | $15$ | $45$ | $1$ | $1$ | $1$ | $3$ | $15$ | $45$ | $43$ | $29$ | $58$ | 3.1.15.29a1.16 | $[\frac{5}{2}, \frac{101}{30}]$ | $[\frac{41}{2}]$ | $\langle\frac{41}{3}\rangle$ | $(\frac{41}{2})$ | $x^3 + (b_{59} \pi^{20} + b_{56} \pi^{19} + b_{53} \pi^{18} + b_{50} \pi^{17} + b_{47} \pi^{16} + b_{44} \pi^{15} + a_{41} \pi^{14}) x^2 + (b_{61} \pi^{21} + b_{58} \pi^{20} + b_{55} \pi^{19} + b_{52} \pi^{18} + b_{49} \pi^{17} + b_{46} \pi^{16} + b_{43} \pi^{15}) x + \pi$ | $1$ | $0$ | $3188646$ | $3188646$ | $0$ | $0\%$ | $1$ | 
      
              | 3.1.15.29a1.16-1.3.45a | $3$ | $3$ | $15$ | $45$ | $1$ | $1$ | $1$ | $3$ | $15$ | $45$ | $45$ | $29$ | $60$ | 3.1.15.29a1.16 | $[\frac{5}{2}, \frac{103}{30}]$ | $[\frac{43}{2}]$ | $\langle\frac{43}{3}\rangle$ | $(\frac{43}{2})$ | $x^3 + (b_{62} \pi^{21} + b_{59} \pi^{20} + b_{56} \pi^{19} + b_{53} \pi^{18} + b_{50} \pi^{17} + b_{47} \pi^{16} + b_{44} \pi^{15}) x^2 + (b_{64} \pi^{22} + b_{61} \pi^{21} + b_{58} \pi^{20} + b_{55} \pi^{19} + b_{52} \pi^{18} + b_{49} \pi^{17} + b_{46} \pi^{16} + a_{43} \pi^{15}) x + \pi$ | $1$ | $0$ | $9565938$ | $9565938$ | $0$ | $0\%$ | $1$ | 
      
              | 3.1.15.29a1.16-1.3.46a | $3$ | $3$ | $15$ | $45$ | $1$ | $1$ | $1$ | $3$ | $15$ | $45$ | $46$ | $29$ | $61$ | 3.1.15.29a1.16 | $[\frac{5}{2}, \frac{52}{15}]$ | $[22]$ | $\langle\frac{44}{3}\rangle$ | $(22)$ | $x^3 + (b_{65} \pi^{22} + b_{62} \pi^{21} + b_{59} \pi^{20} + b_{56} \pi^{19} + b_{53} \pi^{18} + b_{50} \pi^{17} + b_{47} \pi^{16} + a_{44} \pi^{15}) x^2 + (b_{64} \pi^{22} + b_{61} \pi^{21} + b_{58} \pi^{20} + b_{55} \pi^{19} + b_{52} \pi^{18} + b_{49} \pi^{17} + b_{46} \pi^{16}) x + c_{66} \pi^{23} + \pi$ | $3$ | $0$ | $9565938$ | $9565938$ | $0$ | $0\%$ | $1$ | 
      
              | 3.1.15.29a1.16-1.3.47a | $3$ | $3$ | $15$ | $45$ | $1$ | $1$ | $1$ | $3$ | $15$ | $45$ | $47$ | $29$ | $62$ | 3.1.15.29a1.16 | $[\frac{5}{2}, \frac{7}{2}]$ | $[\frac{45}{2}]$ | $\langle15\rangle$ | $(\frac{45}{2})$ | $x^3 + (b_{65} \pi^{22} + b_{62} \pi^{21} + b_{59} \pi^{20} + b_{56} \pi^{19} + b_{53} \pi^{18} + b_{50} \pi^{17} + b_{47} \pi^{16}) x^2 + (b_{67} \pi^{23} + b_{64} \pi^{22} + b_{61} \pi^{21} + b_{58} \pi^{20} + b_{55} \pi^{19} + b_{52} \pi^{18} + b_{49} \pi^{17} + b_{46} \pi^{16}) x + \pi$ | $1$ | $0$ | $14348907$ | $14348907$ | $0$ | $0\%$ | $1$ |