Learn more

Refine search


Results (34 matches)

  displayed columns for results
Label $p$ $n$ $f$ $e$ $c$ Base Abs. Artin slopes Swan slopes Means Rams Generic poly Ambiguity Field count Mass
3.1.15.22a2.8-2.1.0a $3$ $2$ $2$ $1$ $0$ 3.1.15.22a2.8 $[\frac{9}{5}]$ $[ ]$ $\langle \rangle$ $( )$ $x$ $2$ $0$ $1$
3.1.15.22a2.8-1.2.1a $3$ $2$ $1$ $2$ $1$ 3.1.15.22a2.8 $[\frac{9}{5}]$ $[ ]$ $\langle \rangle$ $( )$ $x^2 + d_{0} \pi$ $2$ $0$ $1$
3.1.15.22a2.8-3.1.0a $3$ $3$ $3$ $1$ $0$ 3.1.15.22a2.8 $[\frac{9}{5}]$ $[ ]$ $\langle \rangle$ $( )$ $x$ $3$ $0$ $1$
3.1.15.22a2.8-1.3.3a $3$ $3$ $1$ $3$ $3$ 3.1.15.22a2.8 $[\frac{11}{10}, \frac{9}{5}]$ $[\frac{1}{2}]$ $\langle\frac{1}{3}\rangle$ $(\frac{1}{2})$ $x^3 + a_{1} \pi x + \pi$ $1$ $0$ $2$
3.1.15.22a2.8-1.3.4a $3$ $3$ $1$ $3$ $4$ 3.1.15.22a2.8 $[\frac{6}{5}, \frac{9}{5}]$ $[1]$ $\langle\frac{2}{3}\rangle$ $(1)$ $x^3 + a_{2} \pi x^2 + c_{3} \pi^2 + \pi$ $3$ $0$ $2$
3.1.15.22a2.8-1.3.6a $3$ $3$ $1$ $3$ $6$ 3.1.15.22a2.8 $[\frac{7}{5}, \frac{9}{5}]$ $[2]$ $\langle\frac{4}{3}\rangle$ $(2)$ $x^3 + b_{5} \pi^2 x^2 + a_{4} \pi^2 x + c_{6} \pi^3 + \pi$ $3$ $0$ $6$
3.1.15.22a2.8-1.3.7a $3$ $3$ $1$ $3$ $7$ 3.1.15.22a2.8 $[\frac{3}{2}, \frac{9}{5}]$ $[\frac{5}{2}]$ $\langle\frac{5}{3}\rangle$ $(\frac{5}{2})$ $x^3 + a_{5} \pi^2 x^2 + b_{7} \pi^3 x + \pi$ $1$ $0$ $6$
3.1.15.22a2.8-1.3.9a $3$ $3$ $1$ $3$ $9$ 3.1.15.22a2.8 $[\frac{17}{10}, \frac{9}{5}]$ $[\frac{7}{2}]$ $\langle\frac{7}{3}\rangle$ $(\frac{7}{2})$ $x^3 + b_{8} \pi^3 x^2 + (b_{10} \pi^4 + a_{7} \pi^3) x + \pi$ $1$ $0$ $18$
3.1.15.22a2.8-1.3.10a $3$ $3$ $1$ $3$ $10$ 3.1.15.22a2.8 $[\frac{9}{5}, \frac{9}{5}]$ $[4]$ $\langle\frac{8}{3}\rangle$ $(4)$ $x^3 + (b_{11} \pi^4 + a_{8} \pi^3) x^2 + b_{10} \pi^4 x + c_{12} \pi^5 + \pi$ $3$ $0$ $18$
3.1.15.22a2.8-1.3.12a $3$ $3$ $1$ $3$ $12$ 3.1.15.22a2.8 $[\frac{9}{5}, \frac{28}{15}]$ $[5]$ $\langle\frac{10}{3}\rangle$ $(5)$ $x^3 + (b_{14} \pi^5 + b_{11} \pi^4) x^2 + (b_{13} \pi^5 + a_{10} \pi^4) x + c_{15} \pi^6 + \pi$ $3$ $0$ $54$
3.1.15.22a2.8-1.3.13a $3$ $3$ $1$ $3$ $13$ 3.1.15.22a2.8 $[\frac{9}{5}, \frac{19}{10}]$ $[\frac{11}{2}]$ $\langle\frac{11}{3}\rangle$ $(\frac{11}{2})$ $x^3 + (b_{14} \pi^5 + a_{11} \pi^4) x^2 + (b_{16} \pi^6 + b_{13} \pi^5) x + \pi$ $1$ $0$ $54$
3.1.15.22a2.8-1.3.15a $3$ $3$ $1$ $3$ $15$ 3.1.15.22a2.8 $[\frac{9}{5}, \frac{59}{30}]$ $[\frac{13}{2}]$ $\langle\frac{13}{3}\rangle$ $(\frac{13}{2})$ $x^3 + (b_{17} \pi^6 + b_{14} \pi^5) x^2 + (b_{19} \pi^7 + b_{16} \pi^6 + a_{13} \pi^5) x + \pi$ $1$ $0$ $162$
3.1.15.22a2.8-1.3.16a $3$ $3$ $1$ $3$ $16$ 3.1.15.22a2.8 $[\frac{9}{5}, 2]$ $[7]$ $\langle\frac{14}{3}\rangle$ $(7)$ $x^3 + (b_{20} \pi^7 + b_{17} \pi^6 + a_{14} \pi^5) x^2 + (b_{19} \pi^7 + b_{16} \pi^6) x + c_{21} \pi^8 + \pi$ $3$ $0$ $162$
3.1.15.22a2.8-1.3.18a $3$ $3$ $1$ $3$ $18$ 3.1.15.22a2.8 $[\frac{9}{5}, \frac{31}{15}]$ $[8]$ $\langle\frac{16}{3}\rangle$ $(8)$ $x^3 + (b_{23} \pi^8 + b_{20} \pi^7 + b_{17} \pi^6) x^2 + (b_{22} \pi^8 + b_{19} \pi^7 + a_{16} \pi^6) x + c_{24} \pi^9 + \pi$ $3$ $0$ $486$
3.1.15.22a2.8-1.3.19a $3$ $3$ $1$ $3$ $19$ 3.1.15.22a2.8 $[\frac{9}{5}, \frac{21}{10}]$ $[\frac{17}{2}]$ $\langle\frac{17}{3}\rangle$ $(\frac{17}{2})$ $x^3 + (b_{23} \pi^8 + b_{20} \pi^7 + a_{17} \pi^6) x^2 + (b_{25} \pi^9 + b_{22} \pi^8 + b_{19} \pi^7) x + \pi$ $1$ $0$ $486$
3.1.15.22a2.8-1.3.21a $3$ $3$ $1$ $3$ $21$ 3.1.15.22a2.8 $[\frac{9}{5}, \frac{13}{6}]$ $[\frac{19}{2}]$ $\langle\frac{19}{3}\rangle$ $(\frac{19}{2})$ $x^3 + (b_{26} \pi^9 + b_{23} \pi^8 + b_{20} \pi^7) x^2 + (b_{28} \pi^{10} + b_{25} \pi^9 + b_{22} \pi^8 + a_{19} \pi^7) x + \pi$ $1$ $0$ $1458$
3.1.15.22a2.8-1.3.22a $3$ $3$ $1$ $3$ $22$ 3.1.15.22a2.8 $[\frac{9}{5}, \frac{11}{5}]$ $[10]$ $\langle\frac{20}{3}\rangle$ $(10)$ $x^3 + (b_{29} \pi^{10} + b_{26} \pi^9 + b_{23} \pi^8 + a_{20} \pi^7) x^2 + (b_{28} \pi^{10} + b_{25} \pi^9 + b_{22} \pi^8) x + c_{30} \pi^{11} + \pi$ $3$ $0$ $1458$
3.1.15.22a2.8-1.3.24a $3$ $3$ $1$ $3$ $24$ 3.1.15.22a2.8 $[\frac{9}{5}, \frac{34}{15}]$ $[11]$ $\langle\frac{22}{3}\rangle$ $(11)$ $x^3 + (b_{32} \pi^{11} + b_{29} \pi^{10} + b_{26} \pi^9 + b_{23} \pi^8) x^2 + (b_{31} \pi^{11} + b_{28} \pi^{10} + b_{25} \pi^9 + a_{22} \pi^8) x + c_{33} \pi^{12} + \pi$ $3$ $0$ $4374$
3.1.15.22a2.8-1.3.25a $3$ $3$ $1$ $3$ $25$ 3.1.15.22a2.8 $[\frac{9}{5}, \frac{23}{10}]$ $[\frac{23}{2}]$ $\langle\frac{23}{3}\rangle$ $(\frac{23}{2})$ $x^3 + (b_{32} \pi^{11} + b_{29} \pi^{10} + b_{26} \pi^9 + a_{23} \pi^8) x^2 + (b_{34} \pi^{12} + b_{31} \pi^{11} + b_{28} \pi^{10} + b_{25} \pi^9) x + \pi$ $1$ $0$ $4374$
3.1.15.22a2.8-1.3.27a $3$ $3$ $1$ $3$ $27$ 3.1.15.22a2.8 $[\frac{9}{5}, \frac{71}{30}]$ $[\frac{25}{2}]$ $\langle\frac{25}{3}\rangle$ $(\frac{25}{2})$ $x^3 + (b_{35} \pi^{12} + b_{32} \pi^{11} + b_{29} \pi^{10} + b_{26} \pi^9) x^2 + (b_{37} \pi^{13} + b_{34} \pi^{12} + b_{31} \pi^{11} + b_{28} \pi^{10} + a_{25} \pi^9) x + \pi$ $1$ $0$ $13122$
3.1.15.22a2.8-1.3.28a $3$ $3$ $1$ $3$ $28$ 3.1.15.22a2.8 $[\frac{9}{5}, \frac{12}{5}]$ $[13]$ $\langle\frac{26}{3}\rangle$ $(13)$ $x^3 + (b_{38} \pi^{13} + b_{35} \pi^{12} + b_{32} \pi^{11} + b_{29} \pi^{10} + a_{26} \pi^9) x^2 + (b_{37} \pi^{13} + b_{34} \pi^{12} + b_{31} \pi^{11} + b_{28} \pi^{10}) x + c_{39} \pi^{14} + \pi$ $3$ $0$ $13122$
3.1.15.22a2.8-1.3.30a $3$ $3$ $1$ $3$ $30$ 3.1.15.22a2.8 $[\frac{9}{5}, \frac{37}{15}]$ $[14]$ $\langle\frac{28}{3}\rangle$ $(14)$ $x^3 + (b_{41} \pi^{14} + b_{38} \pi^{13} + b_{35} \pi^{12} + b_{32} \pi^{11} + b_{29} \pi^{10}) x^2 + (b_{40} \pi^{14} + b_{37} \pi^{13} + b_{34} \pi^{12} + b_{31} \pi^{11} + a_{28} \pi^{10}) x + c_{42} \pi^{15} + \pi$ $3$ $0$ $39366$
3.1.15.22a2.8-1.3.31a $3$ $3$ $1$ $3$ $31$ 3.1.15.22a2.8 $[\frac{9}{5}, \frac{5}{2}]$ $[\frac{29}{2}]$ $\langle\frac{29}{3}\rangle$ $(\frac{29}{2})$ $x^3 + (b_{41} \pi^{14} + b_{38} \pi^{13} + b_{35} \pi^{12} + b_{32} \pi^{11} + a_{29} \pi^{10}) x^2 + (b_{43} \pi^{15} + b_{40} \pi^{14} + b_{37} \pi^{13} + b_{34} \pi^{12} + b_{31} \pi^{11}) x + \pi$ $1$ $0$ $39366$
3.1.15.22a2.8-1.3.33a $3$ $3$ $1$ $3$ $33$ 3.1.15.22a2.8 $[\frac{9}{5}, \frac{77}{30}]$ $[\frac{31}{2}]$ $\langle\frac{31}{3}\rangle$ $(\frac{31}{2})$ $x^3 + (b_{44} \pi^{15} + b_{41} \pi^{14} + b_{38} \pi^{13} + b_{35} \pi^{12} + b_{32} \pi^{11}) x^2 + (b_{46} \pi^{16} + b_{43} \pi^{15} + b_{40} \pi^{14} + b_{37} \pi^{13} + b_{34} \pi^{12} + a_{31} \pi^{11}) x + \pi$ $1$ $0$ $118098$
3.1.15.22a2.8-1.3.34a $3$ $3$ $1$ $3$ $34$ 3.1.15.22a2.8 $[\frac{9}{5}, \frac{13}{5}]$ $[16]$ $\langle\frac{32}{3}\rangle$ $(16)$ $x^3 + (b_{47} \pi^{16} + b_{44} \pi^{15} + b_{41} \pi^{14} + b_{38} \pi^{13} + b_{35} \pi^{12} + a_{32} \pi^{11}) x^2 + (b_{46} \pi^{16} + b_{43} \pi^{15} + b_{40} \pi^{14} + b_{37} \pi^{13} + b_{34} \pi^{12}) x + c_{48} \pi^{17} + \pi$ $3$ $0$ $118098$
3.1.15.22a2.8-1.3.36a $3$ $3$ $1$ $3$ $36$ 3.1.15.22a2.8 $[\frac{9}{5}, \frac{8}{3}]$ $[17]$ $\langle\frac{34}{3}\rangle$ $(17)$ $x^3 + (b_{50} \pi^{17} + b_{47} \pi^{16} + b_{44} \pi^{15} + b_{41} \pi^{14} + b_{38} \pi^{13} + b_{35} \pi^{12}) x^2 + (b_{49} \pi^{17} + b_{46} \pi^{16} + b_{43} \pi^{15} + b_{40} \pi^{14} + b_{37} \pi^{13} + a_{34} \pi^{12}) x + c_{51} \pi^{18} + \pi$ $3$ $0$ $354294$
3.1.15.22a2.8-1.3.37a $3$ $3$ $1$ $3$ $37$ 3.1.15.22a2.8 $[\frac{9}{5}, \frac{27}{10}]$ $[\frac{35}{2}]$ $\langle\frac{35}{3}\rangle$ $(\frac{35}{2})$ $x^3 + (b_{50} \pi^{17} + b_{47} \pi^{16} + b_{44} \pi^{15} + b_{41} \pi^{14} + b_{38} \pi^{13} + a_{35} \pi^{12}) x^2 + (b_{52} \pi^{18} + b_{49} \pi^{17} + b_{46} \pi^{16} + b_{43} \pi^{15} + b_{40} \pi^{14} + b_{37} \pi^{13}) x + \pi$ $1$ $0$ $354294$
3.1.15.22a2.8-1.3.39a $3$ $3$ $1$ $3$ $39$ 3.1.15.22a2.8 $[\frac{9}{5}, \frac{83}{30}]$ $[\frac{37}{2}]$ $\langle\frac{37}{3}\rangle$ $(\frac{37}{2})$ $x^3 + (b_{53} \pi^{18} + b_{50} \pi^{17} + b_{47} \pi^{16} + b_{44} \pi^{15} + b_{41} \pi^{14} + b_{38} \pi^{13}) x^2 + (b_{55} \pi^{19} + b_{52} \pi^{18} + b_{49} \pi^{17} + b_{46} \pi^{16} + b_{43} \pi^{15} + b_{40} \pi^{14} + a_{37} \pi^{13}) x + \pi$ $1$ $0$ $1062882$
3.1.15.22a2.8-1.3.40a $3$ $3$ $1$ $3$ $40$ 3.1.15.22a2.8 $[\frac{9}{5}, \frac{14}{5}]$ $[19]$ $\langle\frac{38}{3}\rangle$ $(19)$ $x^3 + (b_{56} \pi^{19} + b_{53} \pi^{18} + b_{50} \pi^{17} + b_{47} \pi^{16} + b_{44} \pi^{15} + b_{41} \pi^{14} + a_{38} \pi^{13}) x^2 + (b_{55} \pi^{19} + b_{52} \pi^{18} + b_{49} \pi^{17} + b_{46} \pi^{16} + b_{43} \pi^{15} + b_{40} \pi^{14}) x + c_{57} \pi^{20} + \pi$ $3$ $0$ $1062882$
3.1.15.22a2.8-1.3.42a $3$ $3$ $1$ $3$ $42$ 3.1.15.22a2.8 $[\frac{9}{5}, \frac{43}{15}]$ $[20]$ $\langle\frac{40}{3}\rangle$ $(20)$ $x^3 + (b_{59} \pi^{20} + b_{56} \pi^{19} + b_{53} \pi^{18} + b_{50} \pi^{17} + b_{47} \pi^{16} + b_{44} \pi^{15} + b_{41} \pi^{14}) x^2 + (b_{58} \pi^{20} + b_{55} \pi^{19} + b_{52} \pi^{18} + b_{49} \pi^{17} + b_{46} \pi^{16} + b_{43} \pi^{15} + a_{40} \pi^{14}) x + c_{60} \pi^{21} + \pi$ $3$ $0$ $3188646$
3.1.15.22a2.8-1.3.43a $3$ $3$ $1$ $3$ $43$ 3.1.15.22a2.8 $[\frac{9}{5}, \frac{29}{10}]$ $[\frac{41}{2}]$ $\langle\frac{41}{3}\rangle$ $(\frac{41}{2})$ $x^3 + (b_{59} \pi^{20} + b_{56} \pi^{19} + b_{53} \pi^{18} + b_{50} \pi^{17} + b_{47} \pi^{16} + b_{44} \pi^{15} + a_{41} \pi^{14}) x^2 + (b_{61} \pi^{21} + b_{58} \pi^{20} + b_{55} \pi^{19} + b_{52} \pi^{18} + b_{49} \pi^{17} + b_{46} \pi^{16} + b_{43} \pi^{15}) x + \pi$ $1$ $0$ $3188646$
3.1.15.22a2.8-1.3.45a $3$ $3$ $1$ $3$ $45$ 3.1.15.22a2.8 $[\frac{9}{5}, \frac{89}{30}]$ $[\frac{43}{2}]$ $\langle\frac{43}{3}\rangle$ $(\frac{43}{2})$ $x^3 + (b_{62} \pi^{21} + b_{59} \pi^{20} + b_{56} \pi^{19} + b_{53} \pi^{18} + b_{50} \pi^{17} + b_{47} \pi^{16} + b_{44} \pi^{15}) x^2 + (b_{64} \pi^{22} + b_{61} \pi^{21} + b_{58} \pi^{20} + b_{55} \pi^{19} + b_{52} \pi^{18} + b_{49} \pi^{17} + b_{46} \pi^{16} + a_{43} \pi^{15}) x + \pi$ $1$ $0$ $9565938$
3.1.15.22a2.8-1.3.46a $3$ $3$ $1$ $3$ $46$ 3.1.15.22a2.8 $[\frac{9}{5}, 3]$ $[22]$ $\langle\frac{44}{3}\rangle$ $(22)$ $x^3 + (b_{65} \pi^{22} + b_{62} \pi^{21} + b_{59} \pi^{20} + b_{56} \pi^{19} + b_{53} \pi^{18} + b_{50} \pi^{17} + b_{47} \pi^{16} + a_{44} \pi^{15}) x^2 + (b_{64} \pi^{22} + b_{61} \pi^{21} + b_{58} \pi^{20} + b_{55} \pi^{19} + b_{52} \pi^{18} + b_{49} \pi^{17} + b_{46} \pi^{16}) x + c_{66} \pi^{23} + \pi$ $3$ $0$ $9565938$
3.1.15.22a2.8-1.3.47a $3$ $3$ $1$ $3$ $47$ 3.1.15.22a2.8 $[\frac{9}{5}, \frac{91}{30}]$ $[\frac{45}{2}]$ $\langle15\rangle$ $(\frac{45}{2})$ $x^3 + (b_{65} \pi^{22} + b_{62} \pi^{21} + b_{59} \pi^{20} + b_{56} \pi^{19} + b_{53} \pi^{18} + b_{50} \pi^{17} + b_{47} \pi^{16}) x^2 + (b_{67} \pi^{23} + b_{64} \pi^{22} + b_{61} \pi^{21} + b_{58} \pi^{20} + b_{55} \pi^{19} + b_{52} \pi^{18} + b_{49} \pi^{17} + b_{46} \pi^{16}) x + \pi$ $1$ $0$ $14348907$
  displayed columns for results