Label |
$p$ |
$n$ |
$n_0$ |
$n_{\mathrm{abs}}$ |
$f$ |
$f_0$ |
$f_{\mathrm{abs}}$ |
$e$ |
$e_0$ |
$e_{\mathrm{abs}}$ |
$c$ |
$c_0$ |
$c_{\mathrm{abs}}$ |
Base |
Abs. Artin slopes |
Swan slopes |
Means |
Rams |
Generic poly |
Ambiguity |
Field count |
Mass |
Mass (absolute) |
Mass stored |
Mass found |
Wild segments |
3.1.15.22a2.8-2.1.0a |
$3$ |
$2$ |
$15$ |
$30$ |
$2$ |
$1$ |
$2$ |
$1$ |
$15$ |
$15$ |
$0$ |
$22$ |
$16$ |
3.1.15.22a2.8 |
$[\frac{9}{5}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$2$ |
$0$ |
$1$ |
$1/2$ |
$0$ |
$0\%$ |
$0$ |
3.1.15.22a2.8-1.2.1a |
$3$ |
$2$ |
$15$ |
$30$ |
$1$ |
$1$ |
$1$ |
$2$ |
$15$ |
$30$ |
$1$ |
$22$ |
$9$ |
3.1.15.22a2.8 |
$[\frac{9}{5}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x^2 + d_{0} \pi$ |
$2$ |
$0$ |
$1$ |
$1$ |
$0$ |
$0\%$ |
$0$ |
3.1.15.22a2.8-3.1.0a |
$3$ |
$3$ |
$15$ |
$45$ |
$3$ |
$1$ |
$3$ |
$1$ |
$15$ |
$15$ |
$0$ |
$22$ |
$24$ |
3.1.15.22a2.8 |
$[\frac{9}{5}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$3$ |
$0$ |
$1$ |
$1/3$ |
$0$ |
$0\%$ |
$0$ |
3.1.15.22a2.8-1.3.3a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$3$ |
$22$ |
$11$ |
3.1.15.22a2.8 |
$[\frac{11}{10}, \frac{9}{5}]$ |
$[\frac{1}{2}]$ |
$\langle\frac{1}{3}\rangle$ |
$(\frac{1}{2})$ |
$x^3 + a_{1} \pi x + \pi$ |
$1$ |
$0$ |
$2$ |
$2$ |
$0$ |
$0\%$ |
$1$ |
3.1.15.22a2.8-1.3.4a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$4$ |
$22$ |
$12$ |
3.1.15.22a2.8 |
$[\frac{6}{5}, \frac{9}{5}]$ |
$[1]$ |
$\langle\frac{2}{3}\rangle$ |
$(1)$ |
$x^3 + a_{2} \pi x^2 + c_{3} \pi^2 + \pi$ |
$3$ |
$0$ |
$2$ |
$2$ |
$0$ |
$0\%$ |
$1$ |
3.1.15.22a2.8-1.3.6a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$6$ |
$22$ |
$14$ |
3.1.15.22a2.8 |
$[\frac{7}{5}, \frac{9}{5}]$ |
$[2]$ |
$\langle\frac{4}{3}\rangle$ |
$(2)$ |
$x^3 + b_{5} \pi^2 x^2 + a_{4} \pi^2 x + c_{6} \pi^3 + \pi$ |
$3$ |
$0$ |
$6$ |
$6$ |
$0$ |
$0\%$ |
$1$ |
3.1.15.22a2.8-1.3.7a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$7$ |
$22$ |
$15$ |
3.1.15.22a2.8 |
$[\frac{3}{2}, \frac{9}{5}]$ |
$[\frac{5}{2}]$ |
$\langle\frac{5}{3}\rangle$ |
$(\frac{5}{2})$ |
$x^3 + a_{5} \pi^2 x^2 + b_{7} \pi^3 x + \pi$ |
$1$ |
$0$ |
$6$ |
$6$ |
$0$ |
$0\%$ |
$1$ |
3.1.15.22a2.8-1.3.9a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$9$ |
$22$ |
$17$ |
3.1.15.22a2.8 |
$[\frac{17}{10}, \frac{9}{5}]$ |
$[\frac{7}{2}]$ |
$\langle\frac{7}{3}\rangle$ |
$(\frac{7}{2})$ |
$x^3 + b_{8} \pi^3 x^2 + (b_{10} \pi^4 + a_{7} \pi^3) x + \pi$ |
$1$ |
$0$ |
$18$ |
$18$ |
$0$ |
$0\%$ |
$1$ |
3.1.15.22a2.8-1.3.10a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$10$ |
$22$ |
$18$ |
3.1.15.22a2.8 |
$[\frac{9}{5}, \frac{9}{5}]$ |
$[4]$ |
$\langle\frac{8}{3}\rangle$ |
$(4)$ |
$x^3 + (b_{11} \pi^4 + a_{8} \pi^3) x^2 + b_{10} \pi^4 x + c_{12} \pi^5 + \pi$ |
$3$ |
$0$ |
$18$ |
$18$ |
$0$ |
$0\%$ |
$1$ |
3.1.15.22a2.8-1.3.12a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$12$ |
$22$ |
$20$ |
3.1.15.22a2.8 |
$[\frac{9}{5}, \frac{28}{15}]$ |
$[5]$ |
$\langle\frac{10}{3}\rangle$ |
$(5)$ |
$x^3 + (b_{14} \pi^5 + b_{11} \pi^4) x^2 + (b_{13} \pi^5 + a_{10} \pi^4) x + c_{15} \pi^6 + \pi$ |
$3$ |
$0$ |
$54$ |
$54$ |
$0$ |
$0\%$ |
$1$ |
3.1.15.22a2.8-1.3.13a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$13$ |
$22$ |
$21$ |
3.1.15.22a2.8 |
$[\frac{9}{5}, \frac{19}{10}]$ |
$[\frac{11}{2}]$ |
$\langle\frac{11}{3}\rangle$ |
$(\frac{11}{2})$ |
$x^3 + (b_{14} \pi^5 + a_{11} \pi^4) x^2 + (b_{16} \pi^6 + b_{13} \pi^5) x + \pi$ |
$1$ |
$0$ |
$54$ |
$54$ |
$0$ |
$0\%$ |
$1$ |
3.1.15.22a2.8-1.3.15a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$15$ |
$22$ |
$23$ |
3.1.15.22a2.8 |
$[\frac{9}{5}, \frac{59}{30}]$ |
$[\frac{13}{2}]$ |
$\langle\frac{13}{3}\rangle$ |
$(\frac{13}{2})$ |
$x^3 + (b_{17} \pi^6 + b_{14} \pi^5) x^2 + (b_{19} \pi^7 + b_{16} \pi^6 + a_{13} \pi^5) x + \pi$ |
$1$ |
$0$ |
$162$ |
$162$ |
$0$ |
$0\%$ |
$1$ |
3.1.15.22a2.8-1.3.16a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$16$ |
$22$ |
$24$ |
3.1.15.22a2.8 |
$[\frac{9}{5}, 2]$ |
$[7]$ |
$\langle\frac{14}{3}\rangle$ |
$(7)$ |
$x^3 + (b_{20} \pi^7 + b_{17} \pi^6 + a_{14} \pi^5) x^2 + (b_{19} \pi^7 + b_{16} \pi^6) x + c_{21} \pi^8 + \pi$ |
$3$ |
$0$ |
$162$ |
$162$ |
$0$ |
$0\%$ |
$1$ |
3.1.15.22a2.8-1.3.18a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$18$ |
$22$ |
$26$ |
3.1.15.22a2.8 |
$[\frac{9}{5}, \frac{31}{15}]$ |
$[8]$ |
$\langle\frac{16}{3}\rangle$ |
$(8)$ |
$x^3 + (b_{23} \pi^8 + b_{20} \pi^7 + b_{17} \pi^6) x^2 + (b_{22} \pi^8 + b_{19} \pi^7 + a_{16} \pi^6) x + c_{24} \pi^9 + \pi$ |
$3$ |
$0$ |
$486$ |
$486$ |
$0$ |
$0\%$ |
$1$ |
3.1.15.22a2.8-1.3.19a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$19$ |
$22$ |
$27$ |
3.1.15.22a2.8 |
$[\frac{9}{5}, \frac{21}{10}]$ |
$[\frac{17}{2}]$ |
$\langle\frac{17}{3}\rangle$ |
$(\frac{17}{2})$ |
$x^3 + (b_{23} \pi^8 + b_{20} \pi^7 + a_{17} \pi^6) x^2 + (b_{25} \pi^9 + b_{22} \pi^8 + b_{19} \pi^7) x + \pi$ |
$1$ |
$0$ |
$486$ |
$486$ |
$0$ |
$0\%$ |
$1$ |
3.1.15.22a2.8-1.3.21a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$21$ |
$22$ |
$29$ |
3.1.15.22a2.8 |
$[\frac{9}{5}, \frac{13}{6}]$ |
$[\frac{19}{2}]$ |
$\langle\frac{19}{3}\rangle$ |
$(\frac{19}{2})$ |
$x^3 + (b_{26} \pi^9 + b_{23} \pi^8 + b_{20} \pi^7) x^2 + (b_{28} \pi^{10} + b_{25} \pi^9 + b_{22} \pi^8 + a_{19} \pi^7) x + \pi$ |
$1$ |
$0$ |
$1458$ |
$1458$ |
$0$ |
$0\%$ |
$1$ |
3.1.15.22a2.8-1.3.22a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$22$ |
$22$ |
$30$ |
3.1.15.22a2.8 |
$[\frac{9}{5}, \frac{11}{5}]$ |
$[10]$ |
$\langle\frac{20}{3}\rangle$ |
$(10)$ |
$x^3 + (b_{29} \pi^{10} + b_{26} \pi^9 + b_{23} \pi^8 + a_{20} \pi^7) x^2 + (b_{28} \pi^{10} + b_{25} \pi^9 + b_{22} \pi^8) x + c_{30} \pi^{11} + \pi$ |
$3$ |
$0$ |
$1458$ |
$1458$ |
$0$ |
$0\%$ |
$1$ |
3.1.15.22a2.8-1.3.24a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$24$ |
$22$ |
$32$ |
3.1.15.22a2.8 |
$[\frac{9}{5}, \frac{34}{15}]$ |
$[11]$ |
$\langle\frac{22}{3}\rangle$ |
$(11)$ |
$x^3 + (b_{32} \pi^{11} + b_{29} \pi^{10} + b_{26} \pi^9 + b_{23} \pi^8) x^2 + (b_{31} \pi^{11} + b_{28} \pi^{10} + b_{25} \pi^9 + a_{22} \pi^8) x + c_{33} \pi^{12} + \pi$ |
$3$ |
$0$ |
$4374$ |
$4374$ |
$0$ |
$0\%$ |
$1$ |
3.1.15.22a2.8-1.3.25a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$25$ |
$22$ |
$33$ |
3.1.15.22a2.8 |
$[\frac{9}{5}, \frac{23}{10}]$ |
$[\frac{23}{2}]$ |
$\langle\frac{23}{3}\rangle$ |
$(\frac{23}{2})$ |
$x^3 + (b_{32} \pi^{11} + b_{29} \pi^{10} + b_{26} \pi^9 + a_{23} \pi^8) x^2 + (b_{34} \pi^{12} + b_{31} \pi^{11} + b_{28} \pi^{10} + b_{25} \pi^9) x + \pi$ |
$1$ |
$0$ |
$4374$ |
$4374$ |
$0$ |
$0\%$ |
$1$ |
3.1.15.22a2.8-1.3.27a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$27$ |
$22$ |
$35$ |
3.1.15.22a2.8 |
$[\frac{9}{5}, \frac{71}{30}]$ |
$[\frac{25}{2}]$ |
$\langle\frac{25}{3}\rangle$ |
$(\frac{25}{2})$ |
$x^3 + (b_{35} \pi^{12} + b_{32} \pi^{11} + b_{29} \pi^{10} + b_{26} \pi^9) x^2 + (b_{37} \pi^{13} + b_{34} \pi^{12} + b_{31} \pi^{11} + b_{28} \pi^{10} + a_{25} \pi^9) x + \pi$ |
$1$ |
$0$ |
$13122$ |
$13122$ |
$0$ |
$0\%$ |
$1$ |
3.1.15.22a2.8-1.3.28a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$28$ |
$22$ |
$36$ |
3.1.15.22a2.8 |
$[\frac{9}{5}, \frac{12}{5}]$ |
$[13]$ |
$\langle\frac{26}{3}\rangle$ |
$(13)$ |
$x^3 + (b_{38} \pi^{13} + b_{35} \pi^{12} + b_{32} \pi^{11} + b_{29} \pi^{10} + a_{26} \pi^9) x^2 + (b_{37} \pi^{13} + b_{34} \pi^{12} + b_{31} \pi^{11} + b_{28} \pi^{10}) x + c_{39} \pi^{14} + \pi$ |
$3$ |
$0$ |
$13122$ |
$13122$ |
$0$ |
$0\%$ |
$1$ |
3.1.15.22a2.8-1.3.30a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$30$ |
$22$ |
$38$ |
3.1.15.22a2.8 |
$[\frac{9}{5}, \frac{37}{15}]$ |
$[14]$ |
$\langle\frac{28}{3}\rangle$ |
$(14)$ |
$x^3 + (b_{41} \pi^{14} + b_{38} \pi^{13} + b_{35} \pi^{12} + b_{32} \pi^{11} + b_{29} \pi^{10}) x^2 + (b_{40} \pi^{14} + b_{37} \pi^{13} + b_{34} \pi^{12} + b_{31} \pi^{11} + a_{28} \pi^{10}) x + c_{42} \pi^{15} + \pi$ |
$3$ |
$0$ |
$39366$ |
$39366$ |
$0$ |
$0\%$ |
$1$ |
3.1.15.22a2.8-1.3.31a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$31$ |
$22$ |
$39$ |
3.1.15.22a2.8 |
$[\frac{9}{5}, \frac{5}{2}]$ |
$[\frac{29}{2}]$ |
$\langle\frac{29}{3}\rangle$ |
$(\frac{29}{2})$ |
$x^3 + (b_{41} \pi^{14} + b_{38} \pi^{13} + b_{35} \pi^{12} + b_{32} \pi^{11} + a_{29} \pi^{10}) x^2 + (b_{43} \pi^{15} + b_{40} \pi^{14} + b_{37} \pi^{13} + b_{34} \pi^{12} + b_{31} \pi^{11}) x + \pi$ |
$1$ |
$0$ |
$39366$ |
$39366$ |
$0$ |
$0\%$ |
$1$ |
3.1.15.22a2.8-1.3.33a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$33$ |
$22$ |
$41$ |
3.1.15.22a2.8 |
$[\frac{9}{5}, \frac{77}{30}]$ |
$[\frac{31}{2}]$ |
$\langle\frac{31}{3}\rangle$ |
$(\frac{31}{2})$ |
$x^3 + (b_{44} \pi^{15} + b_{41} \pi^{14} + b_{38} \pi^{13} + b_{35} \pi^{12} + b_{32} \pi^{11}) x^2 + (b_{46} \pi^{16} + b_{43} \pi^{15} + b_{40} \pi^{14} + b_{37} \pi^{13} + b_{34} \pi^{12} + a_{31} \pi^{11}) x + \pi$ |
$1$ |
$0$ |
$118098$ |
$118098$ |
$0$ |
$0\%$ |
$1$ |
3.1.15.22a2.8-1.3.34a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$34$ |
$22$ |
$42$ |
3.1.15.22a2.8 |
$[\frac{9}{5}, \frac{13}{5}]$ |
$[16]$ |
$\langle\frac{32}{3}\rangle$ |
$(16)$ |
$x^3 + (b_{47} \pi^{16} + b_{44} \pi^{15} + b_{41} \pi^{14} + b_{38} \pi^{13} + b_{35} \pi^{12} + a_{32} \pi^{11}) x^2 + (b_{46} \pi^{16} + b_{43} \pi^{15} + b_{40} \pi^{14} + b_{37} \pi^{13} + b_{34} \pi^{12}) x + c_{48} \pi^{17} + \pi$ |
$3$ |
$0$ |
$118098$ |
$118098$ |
$0$ |
$0\%$ |
$1$ |
3.1.15.22a2.8-1.3.36a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$36$ |
$22$ |
$44$ |
3.1.15.22a2.8 |
$[\frac{9}{5}, \frac{8}{3}]$ |
$[17]$ |
$\langle\frac{34}{3}\rangle$ |
$(17)$ |
$x^3 + (b_{50} \pi^{17} + b_{47} \pi^{16} + b_{44} \pi^{15} + b_{41} \pi^{14} + b_{38} \pi^{13} + b_{35} \pi^{12}) x^2 + (b_{49} \pi^{17} + b_{46} \pi^{16} + b_{43} \pi^{15} + b_{40} \pi^{14} + b_{37} \pi^{13} + a_{34} \pi^{12}) x + c_{51} \pi^{18} + \pi$ |
$3$ |
$0$ |
$354294$ |
$354294$ |
$0$ |
$0\%$ |
$1$ |
3.1.15.22a2.8-1.3.37a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$37$ |
$22$ |
$45$ |
3.1.15.22a2.8 |
$[\frac{9}{5}, \frac{27}{10}]$ |
$[\frac{35}{2}]$ |
$\langle\frac{35}{3}\rangle$ |
$(\frac{35}{2})$ |
$x^3 + (b_{50} \pi^{17} + b_{47} \pi^{16} + b_{44} \pi^{15} + b_{41} \pi^{14} + b_{38} \pi^{13} + a_{35} \pi^{12}) x^2 + (b_{52} \pi^{18} + b_{49} \pi^{17} + b_{46} \pi^{16} + b_{43} \pi^{15} + b_{40} \pi^{14} + b_{37} \pi^{13}) x + \pi$ |
$1$ |
$0$ |
$354294$ |
$354294$ |
$0$ |
$0\%$ |
$1$ |
3.1.15.22a2.8-1.3.39a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$39$ |
$22$ |
$47$ |
3.1.15.22a2.8 |
$[\frac{9}{5}, \frac{83}{30}]$ |
$[\frac{37}{2}]$ |
$\langle\frac{37}{3}\rangle$ |
$(\frac{37}{2})$ |
$x^3 + (b_{53} \pi^{18} + b_{50} \pi^{17} + b_{47} \pi^{16} + b_{44} \pi^{15} + b_{41} \pi^{14} + b_{38} \pi^{13}) x^2 + (b_{55} \pi^{19} + b_{52} \pi^{18} + b_{49} \pi^{17} + b_{46} \pi^{16} + b_{43} \pi^{15} + b_{40} \pi^{14} + a_{37} \pi^{13}) x + \pi$ |
$1$ |
$0$ |
$1062882$ |
$1062882$ |
$0$ |
$0\%$ |
$1$ |
3.1.15.22a2.8-1.3.40a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$40$ |
$22$ |
$48$ |
3.1.15.22a2.8 |
$[\frac{9}{5}, \frac{14}{5}]$ |
$[19]$ |
$\langle\frac{38}{3}\rangle$ |
$(19)$ |
$x^3 + (b_{56} \pi^{19} + b_{53} \pi^{18} + b_{50} \pi^{17} + b_{47} \pi^{16} + b_{44} \pi^{15} + b_{41} \pi^{14} + a_{38} \pi^{13}) x^2 + (b_{55} \pi^{19} + b_{52} \pi^{18} + b_{49} \pi^{17} + b_{46} \pi^{16} + b_{43} \pi^{15} + b_{40} \pi^{14}) x + c_{57} \pi^{20} + \pi$ |
$3$ |
$0$ |
$1062882$ |
$1062882$ |
$0$ |
$0\%$ |
$1$ |
3.1.15.22a2.8-1.3.42a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$42$ |
$22$ |
$50$ |
3.1.15.22a2.8 |
$[\frac{9}{5}, \frac{43}{15}]$ |
$[20]$ |
$\langle\frac{40}{3}\rangle$ |
$(20)$ |
$x^3 + (b_{59} \pi^{20} + b_{56} \pi^{19} + b_{53} \pi^{18} + b_{50} \pi^{17} + b_{47} \pi^{16} + b_{44} \pi^{15} + b_{41} \pi^{14}) x^2 + (b_{58} \pi^{20} + b_{55} \pi^{19} + b_{52} \pi^{18} + b_{49} \pi^{17} + b_{46} \pi^{16} + b_{43} \pi^{15} + a_{40} \pi^{14}) x + c_{60} \pi^{21} + \pi$ |
$3$ |
$0$ |
$3188646$ |
$3188646$ |
$0$ |
$0\%$ |
$1$ |
3.1.15.22a2.8-1.3.43a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$43$ |
$22$ |
$51$ |
3.1.15.22a2.8 |
$[\frac{9}{5}, \frac{29}{10}]$ |
$[\frac{41}{2}]$ |
$\langle\frac{41}{3}\rangle$ |
$(\frac{41}{2})$ |
$x^3 + (b_{59} \pi^{20} + b_{56} \pi^{19} + b_{53} \pi^{18} + b_{50} \pi^{17} + b_{47} \pi^{16} + b_{44} \pi^{15} + a_{41} \pi^{14}) x^2 + (b_{61} \pi^{21} + b_{58} \pi^{20} + b_{55} \pi^{19} + b_{52} \pi^{18} + b_{49} \pi^{17} + b_{46} \pi^{16} + b_{43} \pi^{15}) x + \pi$ |
$1$ |
$0$ |
$3188646$ |
$3188646$ |
$0$ |
$0\%$ |
$1$ |
3.1.15.22a2.8-1.3.45a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$45$ |
$22$ |
$53$ |
3.1.15.22a2.8 |
$[\frac{9}{5}, \frac{89}{30}]$ |
$[\frac{43}{2}]$ |
$\langle\frac{43}{3}\rangle$ |
$(\frac{43}{2})$ |
$x^3 + (b_{62} \pi^{21} + b_{59} \pi^{20} + b_{56} \pi^{19} + b_{53} \pi^{18} + b_{50} \pi^{17} + b_{47} \pi^{16} + b_{44} \pi^{15}) x^2 + (b_{64} \pi^{22} + b_{61} \pi^{21} + b_{58} \pi^{20} + b_{55} \pi^{19} + b_{52} \pi^{18} + b_{49} \pi^{17} + b_{46} \pi^{16} + a_{43} \pi^{15}) x + \pi$ |
$1$ |
$0$ |
$9565938$ |
$9565938$ |
$0$ |
$0\%$ |
$1$ |
3.1.15.22a2.8-1.3.46a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$46$ |
$22$ |
$54$ |
3.1.15.22a2.8 |
$[\frac{9}{5}, 3]$ |
$[22]$ |
$\langle\frac{44}{3}\rangle$ |
$(22)$ |
$x^3 + (b_{65} \pi^{22} + b_{62} \pi^{21} + b_{59} \pi^{20} + b_{56} \pi^{19} + b_{53} \pi^{18} + b_{50} \pi^{17} + b_{47} \pi^{16} + a_{44} \pi^{15}) x^2 + (b_{64} \pi^{22} + b_{61} \pi^{21} + b_{58} \pi^{20} + b_{55} \pi^{19} + b_{52} \pi^{18} + b_{49} \pi^{17} + b_{46} \pi^{16}) x + c_{66} \pi^{23} + \pi$ |
$3$ |
$0$ |
$9565938$ |
$9565938$ |
$0$ |
$0\%$ |
$1$ |
3.1.15.22a2.8-1.3.47a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$47$ |
$22$ |
$55$ |
3.1.15.22a2.8 |
$[\frac{9}{5}, \frac{91}{30}]$ |
$[\frac{45}{2}]$ |
$\langle15\rangle$ |
$(\frac{45}{2})$ |
$x^3 + (b_{65} \pi^{22} + b_{62} \pi^{21} + b_{59} \pi^{20} + b_{56} \pi^{19} + b_{53} \pi^{18} + b_{50} \pi^{17} + b_{47} \pi^{16}) x^2 + (b_{67} \pi^{23} + b_{64} \pi^{22} + b_{61} \pi^{21} + b_{58} \pi^{20} + b_{55} \pi^{19} + b_{52} \pi^{18} + b_{49} \pi^{17} + b_{46} \pi^{16}) x + \pi$ |
$1$ |
$0$ |
$14348907$ |
$14348907$ |
$0$ |
$0\%$ |
$1$ |