Label |
$p$ |
$n$ |
$n_0$ |
$n_{\mathrm{abs}}$ |
$f$ |
$f_0$ |
$f_{\mathrm{abs}}$ |
$e$ |
$e_0$ |
$e_{\mathrm{abs}}$ |
$c$ |
$c_0$ |
$c_{\mathrm{abs}}$ |
Base |
Abs. Artin slopes |
Swan slopes |
Means |
Rams |
Generic poly |
Ambiguity |
Field count |
Mass |
Mass (absolute) |
Mass stored |
Mass found |
Wild segments |
2.1.10.19a1.39-2.1.0a |
$2$ |
$2$ |
$10$ |
$20$ |
$2$ |
$1$ |
$2$ |
$1$ |
$10$ |
$10$ |
$0$ |
$19$ |
$20$ |
2.1.10.19a1.39 |
$[3]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$2$ |
$1$ |
$1$ |
$1/4$ |
$1/4$ |
$100\%$ |
$0$ |
2.1.10.19a1.39-1.2.2a |
$2$ |
$2$ |
$10$ |
$20$ |
$1$ |
$1$ |
$1$ |
$2$ |
$10$ |
$20$ |
$2$ |
$19$ |
$12$ |
2.1.10.19a1.39 |
$[\frac{6}{5}, 3]$ |
$[1]$ |
$\langle\frac{1}{2}\rangle$ |
$(1)$ |
$x^2 + a_{1} \pi x + c_{2} \pi^2 + \pi$ |
$2$ |
$2$ |
$1$ |
$1/2$ |
$1/2$ |
$100\%$ |
$1$ |
2.1.10.19a1.39-1.2.4a |
$2$ |
$2$ |
$10$ |
$20$ |
$1$ |
$1$ |
$1$ |
$2$ |
$10$ |
$20$ |
$4$ |
$19$ |
$14$ |
2.1.10.19a1.39 |
$[\frac{8}{5}, 3]$ |
$[3]$ |
$\langle\frac{3}{2}\rangle$ |
$(3)$ |
$x^2 + (b_{5} \pi^3 + a_{3} \pi^2) x + c_{6} \pi^4 + \pi$ |
$2$ |
$4$ |
$2$ |
$1$ |
$1$ |
$100\%$ |
$1$ |
2.1.10.19a1.39-1.2.6a |
$2$ |
$2$ |
$10$ |
$20$ |
$1$ |
$1$ |
$1$ |
$2$ |
$10$ |
$20$ |
$6$ |
$19$ |
$16$ |
2.1.10.19a1.39 |
$[2, 3]$ |
$[5]$ |
$\langle\frac{5}{2}\rangle$ |
$(5)$ |
$x^2 + (b_{9} \pi^5 + b_{7} \pi^4 + a_{5} \pi^3) x + c_{10} \pi^6 + \pi$ |
$2$ |
$8$ |
$4$ |
$2$ |
$2$ |
$100\%$ |
$1$ |
2.1.10.19a1.39-1.2.8a |
$2$ |
$2$ |
$10$ |
$20$ |
$1$ |
$1$ |
$1$ |
$2$ |
$10$ |
$20$ |
$8$ |
$19$ |
$18$ |
2.1.10.19a1.39 |
$[\frac{12}{5}, 3]$ |
$[7]$ |
$\langle\frac{7}{2}\rangle$ |
$(7)$ |
$x^2 + (b_{13} \pi^7 + b_{11} \pi^6 + b_{9} \pi^5 + a_{7} \pi^4) x + c_{14} \pi^8 + \pi$ |
$2$ |
$16$ |
$8$ |
$4$ |
$4$ |
$100\%$ |
$1$ |
2.1.10.19a1.39-1.2.10a |
$2$ |
$2$ |
$10$ |
$20$ |
$1$ |
$1$ |
$1$ |
$2$ |
$10$ |
$20$ |
$10$ |
$19$ |
$20$ |
2.1.10.19a1.39 |
$[\frac{14}{5}, 3]$ |
$[9]$ |
$\langle\frac{9}{2}\rangle$ |
$(9)$ |
$x^2 + (b_{17} \pi^9 + b_{15} \pi^8 + b_{13} \pi^7 + b_{11} \pi^6 + a_{9} \pi^5) x + c_{18} \pi^{10} + \pi$ |
$2$ |
$32$ |
$16$ |
$8$ |
$8$ |
$100\%$ |
$1$ |
2.1.10.19a1.39-1.2.12a |
$2$ |
$2$ |
$10$ |
$20$ |
$1$ |
$1$ |
$1$ |
$2$ |
$10$ |
$20$ |
$12$ |
$19$ |
$22$ |
2.1.10.19a1.39 |
$[3, \frac{31}{10}]$ |
$[11]$ |
$\langle\frac{11}{2}\rangle$ |
$(11)$ |
$x^2 + (b_{21} \pi^{11} + b_{19} \pi^{10} + b_{17} \pi^9 + b_{15} \pi^8 + b_{13} \pi^7 + a_{11} \pi^6) x + c_{22} \pi^{12} + \pi$ |
$2$ |
$32$ |
$32$ |
$16$ |
$16$ |
$100\%$ |
$1$ |
2.1.10.19a1.39-1.2.14a |
$2$ |
$2$ |
$10$ |
$20$ |
$1$ |
$1$ |
$1$ |
$2$ |
$10$ |
$20$ |
$14$ |
$19$ |
$24$ |
2.1.10.19a1.39 |
$[3, \frac{33}{10}]$ |
$[13]$ |
$\langle\frac{13}{2}\rangle$ |
$(13)$ |
$x^2 + (b_{25} \pi^{13} + b_{23} \pi^{12} + b_{21} \pi^{11} + b_{19} \pi^{10} + b_{17} \pi^9 + b_{15} \pi^8 + a_{13} \pi^7) x + c_{26} \pi^{14} + \pi$ |
$2$ |
$64$ |
$64$ |
$32$ |
$32$ |
$100\%$ |
$1$ |
2.1.10.19a1.39-1.2.16a |
$2$ |
$2$ |
$10$ |
$20$ |
$1$ |
$1$ |
$1$ |
$2$ |
$10$ |
$20$ |
$16$ |
$19$ |
$26$ |
2.1.10.19a1.39 |
$[3, \frac{7}{2}]$ |
$[15]$ |
$\langle\frac{15}{2}\rangle$ |
$(15)$ |
$x^2 + (b_{29} \pi^{15} + b_{27} \pi^{14} + b_{25} \pi^{13} + b_{23} \pi^{12} + b_{21} \pi^{11} + b_{19} \pi^{10} + b_{17} \pi^9 + a_{15} \pi^8) x + c_{30} \pi^{16} + \pi$ |
$2$ |
$128$ |
$128$ |
$64$ |
$64$ |
$100\%$ |
$1$ |
2.1.10.19a1.39-1.2.18a |
$2$ |
$2$ |
$10$ |
$20$ |
$1$ |
$1$ |
$1$ |
$2$ |
$10$ |
$20$ |
$18$ |
$19$ |
$28$ |
2.1.10.19a1.39 |
$[3, \frac{37}{10}]$ |
$[17]$ |
$\langle\frac{17}{2}\rangle$ |
$(17)$ |
$x^2 + (b_{33} \pi^{17} + b_{31} \pi^{16} + b_{29} \pi^{15} + b_{27} \pi^{14} + b_{25} \pi^{13} + b_{23} \pi^{12} + b_{21} \pi^{11} + b_{19} \pi^{10} + a_{17} \pi^9) x + c_{34} \pi^{18} + \pi$ |
$2$ |
$256$ |
$256$ |
$128$ |
$128$ |
$100\%$ |
$1$ |
2.1.10.19a1.39-1.2.20a |
$2$ |
$2$ |
$10$ |
$20$ |
$1$ |
$1$ |
$1$ |
$2$ |
$10$ |
$20$ |
$20$ |
$19$ |
$30$ |
2.1.10.19a1.39 |
$[3, \frac{39}{10}]$ |
$[19]$ |
$\langle\frac{19}{2}\rangle$ |
$(19)$ |
$x^2 + (b_{37} \pi^{19} + b_{35} \pi^{18} + b_{33} \pi^{17} + b_{31} \pi^{16} + b_{29} \pi^{15} + b_{27} \pi^{14} + b_{25} \pi^{13} + b_{23} \pi^{12} + b_{21} \pi^{11} + a_{19} \pi^{10}) x + c_{38} \pi^{20} + \pi$ |
$2$ |
$512$ |
$512$ |
$256$ |
$256$ |
$100\%$ |
$1$ |
2.1.10.19a1.39-1.2.21a |
$2$ |
$2$ |
$10$ |
$20$ |
$1$ |
$1$ |
$1$ |
$2$ |
$10$ |
$20$ |
$21$ |
$19$ |
$31$ |
2.1.10.19a1.39 |
$[3, 4]$ |
$[20]$ |
$\langle10\rangle$ |
$(20)$ |
$x^2 + (b_{39} \pi^{20} + b_{37} \pi^{19} + b_{35} \pi^{18} + b_{33} \pi^{17} + b_{31} \pi^{16} + b_{29} \pi^{15} + b_{27} \pi^{14} + b_{25} \pi^{13} + b_{23} \pi^{12} + b_{21} \pi^{11}) x + c_{40} \pi^{21} + \pi$ |
$2$ |
$1056$ |
$1024$ |
$512$ |
$512$ |
$100\%$ |
$1$ |
2.1.10.19a1.39-3.1.0a |
$2$ |
$3$ |
$10$ |
$30$ |
$3$ |
$1$ |
$3$ |
$1$ |
$10$ |
$10$ |
$0$ |
$19$ |
$30$ |
2.1.10.19a1.39 |
$[3]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$3$ |
$0$ |
$1$ |
$1/6$ |
$0$ |
$0\%$ |
$0$ |
2.1.10.19a1.39-1.3.2a |
$2$ |
$3$ |
$10$ |
$30$ |
$1$ |
$1$ |
$1$ |
$3$ |
$10$ |
$30$ |
$2$ |
$19$ |
$12$ |
2.1.10.19a1.39 |
$[3]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x^3 + \pi$ |
$1$ |
$0$ |
$1$ |
$1/2$ |
$0$ |
$0\%$ |
$0$ |
2.1.10.19a1.39-4.1.0a |
$2$ |
$4$ |
$10$ |
$40$ |
$4$ |
$1$ |
$4$ |
$1$ |
$10$ |
$10$ |
$0$ |
$19$ |
$40$ |
2.1.10.19a1.39 |
$[3]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$4$ |
$0$ |
$1$ |
$1/8$ |
$0$ |
$0\%$ |
$0$ |
2.1.10.19a1.39-2.2.4a |
$2$ |
$4$ |
$10$ |
$40$ |
$2$ |
$1$ |
$2$ |
$2$ |
$10$ |
$20$ |
$4$ |
$19$ |
$24$ |
2.1.10.19a1.39 |
$[\frac{6}{5}, 3]$ |
$[1]$ |
$\langle\frac{1}{2}\rangle$ |
$(1)$ |
$x^2 + a_{1} \pi x + c_{2} \pi^2 + \pi$ |
$4$ |
$0$ |
$3$ |
$3/4$ |
$0$ |
$0\%$ |
$1$ |
2.1.10.19a1.39-2.2.8a |
$2$ |
$4$ |
$10$ |
$40$ |
$2$ |
$1$ |
$2$ |
$2$ |
$10$ |
$20$ |
$8$ |
$19$ |
$28$ |
2.1.10.19a1.39 |
$[\frac{8}{5}, 3]$ |
$[3]$ |
$\langle\frac{3}{2}\rangle$ |
$(3)$ |
$x^2 + (b_{5} \pi^3 + a_{3} \pi^2) x + c_{6} \pi^4 + \pi$ |
$4$ |
$0$ |
$12$ |
$3$ |
$0$ |
$0\%$ |
$1$ |
2.1.10.19a1.39-2.2.12a |
$2$ |
$4$ |
$10$ |
$40$ |
$2$ |
$1$ |
$2$ |
$2$ |
$10$ |
$20$ |
$12$ |
$19$ |
$32$ |
2.1.10.19a1.39 |
$[2, 3]$ |
$[5]$ |
$\langle\frac{5}{2}\rangle$ |
$(5)$ |
$x^2 + (b_{9} \pi^5 + b_{7} \pi^4 + a_{5} \pi^3) x + c_{10} \pi^6 + \pi$ |
$4$ |
$0$ |
$48$ |
$12$ |
$0$ |
$0\%$ |
$1$ |
2.1.10.19a1.39-2.2.16a |
$2$ |
$4$ |
$10$ |
$40$ |
$2$ |
$1$ |
$2$ |
$2$ |
$10$ |
$20$ |
$16$ |
$19$ |
$36$ |
2.1.10.19a1.39 |
$[\frac{12}{5}, 3]$ |
$[7]$ |
$\langle\frac{7}{2}\rangle$ |
$(7)$ |
$x^2 + (b_{13} \pi^7 + b_{11} \pi^6 + b_{9} \pi^5 + a_{7} \pi^4) x + c_{14} \pi^8 + \pi$ |
$4$ |
$0$ |
$192$ |
$48$ |
$0$ |
$0\%$ |
$1$ |
2.1.10.19a1.39-2.2.20a |
$2$ |
$4$ |
$10$ |
$40$ |
$2$ |
$1$ |
$2$ |
$2$ |
$10$ |
$20$ |
$20$ |
$19$ |
$40$ |
2.1.10.19a1.39 |
$[\frac{14}{5}, 3]$ |
$[9]$ |
$\langle\frac{9}{2}\rangle$ |
$(9)$ |
$x^2 + (b_{17} \pi^9 + b_{15} \pi^8 + b_{13} \pi^7 + b_{11} \pi^6 + a_{9} \pi^5) x + c_{18} \pi^{10} + \pi$ |
$4$ |
$0$ |
$768$ |
$192$ |
$0$ |
$0\%$ |
$1$ |
2.1.10.19a1.39-2.2.24a |
$2$ |
$4$ |
$10$ |
$40$ |
$2$ |
$1$ |
$2$ |
$2$ |
$10$ |
$20$ |
$24$ |
$19$ |
$44$ |
2.1.10.19a1.39 |
$[3, \frac{31}{10}]$ |
$[11]$ |
$\langle\frac{11}{2}\rangle$ |
$(11)$ |
$x^2 + (b_{21} \pi^{11} + b_{19} \pi^{10} + b_{17} \pi^9 + b_{15} \pi^8 + b_{13} \pi^7 + a_{11} \pi^6) x + c_{22} \pi^{12} + \pi$ |
$4$ |
$0$ |
$3072$ |
$768$ |
$0$ |
$0\%$ |
$1$ |
2.1.10.19a1.39-2.2.28a |
$2$ |
$4$ |
$10$ |
$40$ |
$2$ |
$1$ |
$2$ |
$2$ |
$10$ |
$20$ |
$28$ |
$19$ |
$48$ |
2.1.10.19a1.39 |
$[3, \frac{33}{10}]$ |
$[13]$ |
$\langle\frac{13}{2}\rangle$ |
$(13)$ |
$x^2 + (b_{25} \pi^{13} + b_{23} \pi^{12} + b_{21} \pi^{11} + b_{19} \pi^{10} + b_{17} \pi^9 + b_{15} \pi^8 + a_{13} \pi^7) x + c_{26} \pi^{14} + \pi$ |
$4$ |
$0$ |
$12288$ |
$3072$ |
$0$ |
$0\%$ |
$1$ |
2.1.10.19a1.39-2.2.32a |
$2$ |
$4$ |
$10$ |
$40$ |
$2$ |
$1$ |
$2$ |
$2$ |
$10$ |
$20$ |
$32$ |
$19$ |
$52$ |
2.1.10.19a1.39 |
$[3, \frac{7}{2}]$ |
$[15]$ |
$\langle\frac{15}{2}\rangle$ |
$(15)$ |
$x^2 + (b_{29} \pi^{15} + b_{27} \pi^{14} + b_{25} \pi^{13} + b_{23} \pi^{12} + b_{21} \pi^{11} + b_{19} \pi^{10} + b_{17} \pi^9 + a_{15} \pi^8) x + c_{30} \pi^{16} + \pi$ |
$4$ |
$0$ |
$49152$ |
$12288$ |
$0$ |
$0\%$ |
$1$ |
2.1.10.19a1.39-2.2.36a |
$2$ |
$4$ |
$10$ |
$40$ |
$2$ |
$1$ |
$2$ |
$2$ |
$10$ |
$20$ |
$36$ |
$19$ |
$56$ |
2.1.10.19a1.39 |
$[3, \frac{37}{10}]$ |
$[17]$ |
$\langle\frac{17}{2}\rangle$ |
$(17)$ |
$x^2 + (b_{33} \pi^{17} + b_{31} \pi^{16} + b_{29} \pi^{15} + b_{27} \pi^{14} + b_{25} \pi^{13} + b_{23} \pi^{12} + b_{21} \pi^{11} + b_{19} \pi^{10} + a_{17} \pi^9) x + c_{34} \pi^{18} + \pi$ |
$4$ |
$0$ |
$196608$ |
$49152$ |
$0$ |
$0\%$ |
$1$ |
2.1.10.19a1.39-2.2.40a |
$2$ |
$4$ |
$10$ |
$40$ |
$2$ |
$1$ |
$2$ |
$2$ |
$10$ |
$20$ |
$40$ |
$19$ |
$60$ |
2.1.10.19a1.39 |
$[3, \frac{39}{10}]$ |
$[19]$ |
$\langle\frac{19}{2}\rangle$ |
$(19)$ |
$x^2 + (b_{37} \pi^{19} + b_{35} \pi^{18} + b_{33} \pi^{17} + b_{31} \pi^{16} + b_{29} \pi^{15} + b_{27} \pi^{14} + b_{25} \pi^{13} + b_{23} \pi^{12} + b_{21} \pi^{11} + a_{19} \pi^{10}) x + c_{38} \pi^{20} + \pi$ |
$4$ |
$0$ |
$786432$ |
$196608$ |
$0$ |
$0\%$ |
$1$ |
2.1.10.19a1.39-2.2.42a |
$2$ |
$4$ |
$10$ |
$40$ |
$2$ |
$1$ |
$2$ |
$2$ |
$10$ |
$20$ |
$42$ |
$19$ |
$62$ |
2.1.10.19a1.39 |
$[3, 4]$ |
$[20]$ |
$\langle10\rangle$ |
$(20)$ |
$x^2 + (b_{39} \pi^{20} + b_{37} \pi^{19} + b_{35} \pi^{18} + b_{33} \pi^{17} + b_{31} \pi^{16} + b_{29} \pi^{15} + b_{27} \pi^{14} + b_{25} \pi^{13} + b_{23} \pi^{12} + b_{21} \pi^{11}) x + c_{40} \pi^{21} + \pi$ |
$4$ |
$0$ |
$1048576$ |
$262144$ |
$0$ |
$0\%$ |
$1$ |
2.1.10.19a1.39-1.4.4a |
$2$ |
$4$ |
$10$ |
$40$ |
$1$ |
$1$ |
$1$ |
$4$ |
$10$ |
$40$ |
$4$ |
$19$ |
$14$ |
2.1.10.19a1.39 |
$[\frac{16}{15}, \frac{16}{15}, 3]$ |
$[\frac{1}{3}, \frac{1}{3}]$ |
$\langle\frac{1}{6}, \frac{1}{4}\rangle$ |
$(\frac{1}{3}, \frac{1}{3})$ |
$x^4 + a_{1} \pi x + \pi$ |
$1$ |
$0$ |
$1$ |
$1/2$ |
$0$ |
$0\%$ |
$1$ |
2.1.10.19a1.39-1.4.6a |
$2$ |
$4$ |
$10$ |
$40$ |
$1$ |
$1$ |
$1$ |
$4$ |
$10$ |
$40$ |
$6$ |
$19$ |
$16$ |
2.1.10.19a1.39 |
$[\frac{6}{5}, \frac{6}{5}, 3]$ |
$[1, 1]$ |
$\langle\frac{1}{2}, \frac{3}{4}\rangle$ |
$(1, 1)$ |
$x^4 + a_{3} \pi x^3 + b_{2} \pi x^2 + c_{4} \pi^2 + \pi$ |
$2$ |
$0$ |
$2$ |
$1$ |
$0$ |
$0\%$ |
$1$ |
2.1.10.19a1.39-1.4.8a |
$2$ |
$4$ |
$10$ |
$40$ |
$1$ |
$1$ |
$1$ |
$4$ |
$10$ |
$40$ |
$8$ |
$19$ |
$18$ |
2.1.10.19a1.39 |
$[\frac{4}{3}, \frac{4}{3}, 3]$ |
$[\frac{5}{3}, \frac{5}{3}]$ |
$\langle\frac{5}{6}, \frac{5}{4}\rangle$ |
$(\frac{5}{3}, \frac{5}{3})$ |
$x^4 + b_{6} \pi^2 x^2 + a_{5} \pi^2 x + \pi$ |
$1$ |
$0$ |
$2$ |
$1$ |
$0$ |
$0\%$ |
$1$ |
2.1.10.19a1.39-1.4.8b |
$2$ |
$4$ |
$10$ |
$40$ |
$1$ |
$1$ |
$1$ |
$4$ |
$10$ |
$40$ |
$8$ |
$19$ |
$18$ |
2.1.10.19a1.39 |
$[\frac{6}{5}, \frac{7}{5}, 3]$ |
$[1, 2]$ |
$\langle\frac{1}{2}, \frac{5}{4}\rangle$ |
$(1, 3)$ |
$x^4 + b_{7} \pi^2 x^3 + a_{2} \pi x^2 + a_{5} \pi^2 x + c_{8} \pi^3 + c_{4} \pi^2 + \pi$ |
$4$ |
$0$ |
$2$ |
$1$ |
$0$ |
$0\%$ |
$2$ |
2.1.10.19a1.39-1.4.10a |
$2$ |
$4$ |
$10$ |
$40$ |
$1$ |
$1$ |
$1$ |
$4$ |
$10$ |
$40$ |
$10$ |
$19$ |
$20$ |
2.1.10.19a1.39 |
$[\frac{22}{15}, \frac{22}{15}, 3]$ |
$[\frac{7}{3}, \frac{7}{3}]$ |
$\langle\frac{7}{6}, \frac{7}{4}\rangle$ |
$(\frac{7}{3}, \frac{7}{3})$ |
$x^4 + a_{7} \pi^2 x^3 + b_{6} \pi^2 x^2 + b_{9} \pi^3 x + \pi$ |
$1$ |
$0$ |
$4$ |
$2$ |
$0$ |
$0\%$ |
$1$ |
2.1.10.19a1.39-1.4.10b |
$2$ |
$4$ |
$10$ |
$40$ |
$1$ |
$1$ |
$1$ |
$4$ |
$10$ |
$40$ |
$10$ |
$19$ |
$20$ |
2.1.10.19a1.39 |
$[\frac{6}{5}, \frac{8}{5}, 3]$ |
$[1, 3]$ |
$\langle\frac{1}{2}, \frac{7}{4}\rangle$ |
$(1, 5)$ |
$x^4 + (b_{11} \pi^3 + a_{7} \pi^2) x^3 + a_{2} \pi x^2 + b_{9} \pi^3 x + c_{12} \pi^4 + c_{4} \pi^2 + \pi$ |
$4$ |
$0$ |
$4$ |
$2$ |
$0$ |
$0\%$ |
$2$ |
2.1.10.19a1.39-1.4.12a |
$2$ |
$4$ |
$10$ |
$40$ |
$1$ |
$1$ |
$1$ |
$4$ |
$10$ |
$40$ |
$12$ |
$19$ |
$22$ |
2.1.10.19a1.39 |
$[\frac{8}{5}, \frac{8}{5}, 3]$ |
$[3, 3]$ |
$\langle\frac{3}{2}, \frac{9}{4}\rangle$ |
$(3, 3)$ |
$x^4 + b_{11} \pi^3 x^3 + (b_{10} \pi^3 + b_{6} \pi^2) x^2 + a_{9} \pi^3 x + c_{12} \pi^4 + \pi$ |
$2$ |
$0$ |
$8$ |
$4$ |
$0$ |
$0\%$ |
$1$ |
2.1.10.19a1.39-1.4.12b |
$2$ |
$4$ |
$10$ |
$40$ |
$1$ |
$1$ |
$1$ |
$4$ |
$10$ |
$40$ |
$12$ |
$19$ |
$22$ |
2.1.10.19a1.39 |
$[\frac{6}{5}, \frac{9}{5}, 3]$ |
$[1, 4]$ |
$\langle\frac{1}{2}, \frac{9}{4}\rangle$ |
$(1, 7)$ |
$x^4 + (b_{15} \pi^4 + b_{11} \pi^3) x^3 + a_{2} \pi x^2 + (b_{13} \pi^4 + a_{9} \pi^3) x + c_{16} \pi^5 + c_{4} \pi^2 + \pi$ |
$4$ |
$0$ |
$8$ |
$4$ |
$0$ |
$0\%$ |
$2$ |
2.1.10.19a1.39-1.4.14a |
$2$ |
$4$ |
$10$ |
$40$ |
$1$ |
$1$ |
$1$ |
$4$ |
$10$ |
$40$ |
$14$ |
$19$ |
$24$ |
2.1.10.19a1.39 |
$[\frac{26}{15}, \frac{26}{15}, 3]$ |
$[\frac{11}{3}, \frac{11}{3}]$ |
$\langle\frac{11}{6}, \frac{11}{4}\rangle$ |
$(\frac{11}{3}, \frac{11}{3})$ |
$x^4 + a_{11} \pi^3 x^3 + (b_{14} \pi^4 + b_{10} \pi^3) x^2 + b_{13} \pi^4 x + \pi$ |
$1$ |
$0$ |
$8$ |
$4$ |
$0$ |
$0\%$ |
$1$ |
2.1.10.19a1.39-1.4.14b |
$2$ |
$4$ |
$10$ |
$40$ |
$1$ |
$1$ |
$1$ |
$4$ |
$10$ |
$40$ |
$14$ |
$19$ |
$24$ |
2.1.10.19a1.39 |
$[\frac{6}{5}, 2, 3]$ |
$[1, 5]$ |
$\langle\frac{1}{2}, \frac{11}{4}\rangle$ |
$(1, 9)$ |
$x^4 + (b_{19} \pi^5 + b_{15} \pi^4 + a_{11} \pi^3) x^3 + a_{2} \pi x^2 + (b_{17} \pi^5 + b_{13} \pi^4) x + c_{20} \pi^6 + c_{4} \pi^2 + \pi$ |
$4$ |
$0$ |
$16$ |
$8$ |
$0$ |
$0\%$ |
$2$ |
2.1.10.19a1.39-1.4.14c |
$2$ |
$4$ |
$10$ |
$40$ |
$1$ |
$1$ |
$1$ |
$4$ |
$10$ |
$40$ |
$14$ |
$19$ |
$24$ |
2.1.10.19a1.39 |
$[\frac{8}{5}, \frac{9}{5}, 3]$ |
$[3, 4]$ |
$\langle\frac{3}{2}, \frac{11}{4}\rangle$ |
$(3, 5)$ |
$x^4 + (b_{15} \pi^4 + a_{11} \pi^3) x^3 + (b_{10} \pi^3 + a_{6} \pi^2) x^2 + b_{13} \pi^4 x + c_{16} \pi^5 + c_{12} \pi^4 + \pi$ |
$4$ |
$0$ |
$8$ |
$4$ |
$0$ |
$0\%$ |
$2$ |
2.1.10.19a1.39-1.4.16a |
$2$ |
$4$ |
$10$ |
$40$ |
$1$ |
$1$ |
$1$ |
$4$ |
$10$ |
$40$ |
$16$ |
$19$ |
$26$ |
2.1.10.19a1.39 |
$[\frac{28}{15}, \frac{28}{15}, 3]$ |
$[\frac{13}{3}, \frac{13}{3}]$ |
$\langle\frac{13}{6}, \frac{13}{4}\rangle$ |
$(\frac{13}{3}, \frac{13}{3})$ |
$x^4 + b_{15} \pi^4 x^3 + (b_{14} \pi^4 + b_{10} \pi^3) x^2 + (b_{17} \pi^5 + a_{13} \pi^4) x + \pi$ |
$1$ |
$0$ |
$16$ |
$8$ |
$0$ |
$0\%$ |
$1$ |
2.1.10.19a1.39-1.4.16b |
$2$ |
$4$ |
$10$ |
$40$ |
$1$ |
$1$ |
$1$ |
$4$ |
$10$ |
$40$ |
$16$ |
$19$ |
$26$ |
2.1.10.19a1.39 |
$[\frac{6}{5}, \frac{11}{5}, 3]$ |
$[1, 6]$ |
$\langle\frac{1}{2}, \frac{13}{4}\rangle$ |
$(1, 11)$ |
$x^4 + (b_{23} \pi^6 + b_{19} \pi^5 + b_{15} \pi^4) x^3 + a_{2} \pi x^2 + (b_{21} \pi^6 + b_{17} \pi^5 + a_{13} \pi^4) x + c_{24} \pi^7 + c_{4} \pi^2 + \pi$ |
$4$ |
$0$ |
$32$ |
$16$ |
$0$ |
$0\%$ |
$2$ |
2.1.10.19a1.39-1.4.16c |
$2$ |
$4$ |
$10$ |
$40$ |
$1$ |
$1$ |
$1$ |
$4$ |
$10$ |
$40$ |
$16$ |
$19$ |
$26$ |
2.1.10.19a1.39 |
$[\frac{8}{5}, 2, 3]$ |
$[3, 5]$ |
$\langle\frac{3}{2}, \frac{13}{4}\rangle$ |
$(3, 7)$ |
$x^4 + (b_{19} \pi^5 + b_{15} \pi^4) x^3 + (b_{10} \pi^3 + a_{6} \pi^2) x^2 + (b_{17} \pi^5 + a_{13} \pi^4) x + c_{20} \pi^6 + c_{12} \pi^4 + \pi$ |
$4$ |
$0$ |
$16$ |
$8$ |
$0$ |
$0\%$ |
$2$ |
2.1.10.19a1.39-1.4.18a |
$2$ |
$4$ |
$10$ |
$40$ |
$1$ |
$1$ |
$1$ |
$4$ |
$10$ |
$40$ |
$18$ |
$19$ |
$28$ |
2.1.10.19a1.39 |
$[2, 2, 3]$ |
$[5, 5]$ |
$\langle\frac{5}{2}, \frac{15}{4}\rangle$ |
$(5, 5)$ |
$x^4 + (b_{19} \pi^5 + a_{15} \pi^4) x^3 + (b_{18} \pi^5 + b_{14} \pi^4 + b_{10} \pi^3) x^2 + b_{17} \pi^5 x + c_{20} \pi^6 + \pi$ |
$2$ |
$0$ |
$32$ |
$16$ |
$0$ |
$0\%$ |
$1$ |
2.1.10.19a1.39-1.4.18b |
$2$ |
$4$ |
$10$ |
$40$ |
$1$ |
$1$ |
$1$ |
$4$ |
$10$ |
$40$ |
$18$ |
$19$ |
$28$ |
2.1.10.19a1.39 |
$[\frac{6}{5}, \frac{12}{5}, 3]$ |
$[1, 7]$ |
$\langle\frac{1}{2}, \frac{15}{4}\rangle$ |
$(1, 13)$ |
$x^4 + (b_{27} \pi^7 + b_{23} \pi^6 + b_{19} \pi^5 + a_{15} \pi^4) x^3 + a_{2} \pi x^2 + (b_{25} \pi^7 + b_{21} \pi^6 + b_{17} \pi^5) x + c_{28} \pi^8 + c_{4} \pi^2 + \pi$ |
$4$ |
$0$ |
$64$ |
$32$ |
$0$ |
$0\%$ |
$2$ |
2.1.10.19a1.39-1.4.18c |
$2$ |
$4$ |
$10$ |
$40$ |
$1$ |
$1$ |
$1$ |
$4$ |
$10$ |
$40$ |
$18$ |
$19$ |
$28$ |
2.1.10.19a1.39 |
$[\frac{8}{5}, \frac{11}{5}, 3]$ |
$[3, 6]$ |
$\langle\frac{3}{2}, \frac{15}{4}\rangle$ |
$(3, 9)$ |
$x^4 + (b_{23} \pi^6 + b_{19} \pi^5 + a_{15} \pi^4) x^3 + (b_{10} \pi^3 + a_{6} \pi^2) x^2 + (b_{21} \pi^6 + b_{17} \pi^5) x + c_{24} \pi^7 + c_{12} \pi^4 + \pi$ |
$4$ |
$0$ |
$32$ |
$16$ |
$0$ |
$0\%$ |
$2$ |
2.1.10.19a1.39-1.4.20a |
$2$ |
$4$ |
$10$ |
$40$ |
$1$ |
$1$ |
$1$ |
$4$ |
$10$ |
$40$ |
$20$ |
$19$ |
$30$ |
2.1.10.19a1.39 |
$[\frac{32}{15}, \frac{32}{15}, 3]$ |
$[\frac{17}{3}, \frac{17}{3}]$ |
$\langle\frac{17}{6}, \frac{17}{4}\rangle$ |
$(\frac{17}{3}, \frac{17}{3})$ |
$x^4 + b_{19} \pi^5 x^3 + (b_{22} \pi^6 + b_{18} \pi^5 + b_{14} \pi^4) x^2 + (b_{21} \pi^6 + a_{17} \pi^5) x + \pi$ |
$1$ |
$0$ |
$32$ |
$16$ |
$0$ |
$0\%$ |
$1$ |
2.1.10.19a1.39-1.4.20b |
$2$ |
$4$ |
$10$ |
$40$ |
$1$ |
$1$ |
$1$ |
$4$ |
$10$ |
$40$ |
$20$ |
$19$ |
$30$ |
2.1.10.19a1.39 |
$[\frac{6}{5}, \frac{13}{5}, 3]$ |
$[1, 8]$ |
$\langle\frac{1}{2}, \frac{17}{4}\rangle$ |
$(1, 15)$ |
$x^4 + (b_{31} \pi^8 + b_{27} \pi^7 + b_{23} \pi^6 + b_{19} \pi^5) x^3 + a_{2} \pi x^2 + (b_{29} \pi^8 + b_{25} \pi^7 + b_{21} \pi^6 + a_{17} \pi^5) x + c_{32} \pi^9 + c_{4} \pi^2 + \pi$ |
$4$ |
$0$ |
$128$ |
$64$ |
$0$ |
$0\%$ |
$2$ |
2.1.10.19a1.39-1.4.20c |
$2$ |
$4$ |
$10$ |
$40$ |
$1$ |
$1$ |
$1$ |
$4$ |
$10$ |
$40$ |
$20$ |
$19$ |
$30$ |
2.1.10.19a1.39 |
$[\frac{8}{5}, \frac{12}{5}, 3]$ |
$[3, 7]$ |
$\langle\frac{3}{2}, \frac{17}{4}\rangle$ |
$(3, 11)$ |
$x^4 + (b_{27} \pi^7 + b_{23} \pi^6 + b_{19} \pi^5) x^3 + (b_{10} \pi^3 + a_{6} \pi^2) x^2 + (b_{25} \pi^7 + b_{21} \pi^6 + a_{17} \pi^5) x + c_{28} \pi^8 + c_{12} \pi^4 + \pi$ |
$4$ |
$0$ |
$64$ |
$32$ |
$0$ |
$0\%$ |
$2$ |
2.1.10.19a1.39-1.4.20d |
$2$ |
$4$ |
$10$ |
$40$ |
$1$ |
$1$ |
$1$ |
$4$ |
$10$ |
$40$ |
$20$ |
$19$ |
$30$ |
2.1.10.19a1.39 |
$[2, \frac{11}{5}, 3]$ |
$[5, 6]$ |
$\langle\frac{5}{2}, \frac{17}{4}\rangle$ |
$(5, 7)$ |
$x^4 + (b_{23} \pi^6 + b_{19} \pi^5) x^3 + (b_{18} \pi^5 + b_{14} \pi^4 + a_{10} \pi^3) x^2 + (b_{21} \pi^6 + a_{17} \pi^5) x + c_{24} \pi^7 + c_{20} \pi^6 + \pi$ |
$4$ |
$0$ |
$32$ |
$16$ |
$0$ |
$0\%$ |
$2$ |
2.1.10.19a1.39-1.4.22a |
$2$ |
$4$ |
$10$ |
$40$ |
$1$ |
$1$ |
$1$ |
$4$ |
$10$ |
$40$ |
$22$ |
$19$ |
$32$ |
2.1.10.19a1.39 |
$[\frac{34}{15}, \frac{34}{15}, 3]$ |
$[\frac{19}{3}, \frac{19}{3}]$ |
$\langle\frac{19}{6}, \frac{19}{4}\rangle$ |
$(\frac{19}{3}, \frac{19}{3})$ |
$x^4 + (b_{23} \pi^6 + a_{19} \pi^5) x^3 + (b_{22} \pi^6 + b_{18} \pi^5 + b_{14} \pi^4) x^2 + (b_{25} \pi^7 + b_{21} \pi^6) x + \pi$ |
$1$ |
$0$ |
$64$ |
$32$ |
$0$ |
$0\%$ |
$1$ |
2.1.10.19a1.39-1.4.22b |
$2$ |
$4$ |
$10$ |
$40$ |
$1$ |
$1$ |
$1$ |
$4$ |
$10$ |
$40$ |
$22$ |
$19$ |
$32$ |
2.1.10.19a1.39 |
$[\frac{6}{5}, \frac{14}{5}, 3]$ |
$[1, 9]$ |
$\langle\frac{1}{2}, \frac{19}{4}\rangle$ |
$(1, 17)$ |
$x^4 + (b_{35} \pi^9 + b_{31} \pi^8 + b_{27} \pi^7 + b_{23} \pi^6 + a_{19} \pi^5) x^3 + a_{2} \pi x^2 + (b_{33} \pi^9 + b_{29} \pi^8 + b_{25} \pi^7 + b_{21} \pi^6) x + c_{36} \pi^{10} + c_{4} \pi^2 + \pi$ |
$4$ |
$0$ |
$256$ |
$128$ |
$0$ |
$0\%$ |
$2$ |
2.1.10.19a1.39-1.4.22c |
$2$ |
$4$ |
$10$ |
$40$ |
$1$ |
$1$ |
$1$ |
$4$ |
$10$ |
$40$ |
$22$ |
$19$ |
$32$ |
2.1.10.19a1.39 |
$[\frac{8}{5}, \frac{13}{5}, 3]$ |
$[3, 8]$ |
$\langle\frac{3}{2}, \frac{19}{4}\rangle$ |
$(3, 13)$ |
$x^4 + (b_{31} \pi^8 + b_{27} \pi^7 + b_{23} \pi^6 + a_{19} \pi^5) x^3 + (b_{10} \pi^3 + a_{6} \pi^2) x^2 + (b_{29} \pi^8 + b_{25} \pi^7 + b_{21} \pi^6) x + c_{32} \pi^9 + c_{12} \pi^4 + \pi$ |
$4$ |
$0$ |
$128$ |
$64$ |
$0$ |
$0\%$ |
$2$ |