Formats: - HTML - YAML - JSON - 2025-12-16T03:32:24.906068
Query: /api/smf_dims/?_offset=0
Show schema

{'111111': '(-t**28+t**26-t**25+2*t**24+t**23-2*t**19-t**18-t**17+t**16-2*t**14+4*t**13-3*t**12-t**11+2*t**10-t**8+5*t**7+t**5+3*t**4)/(1+t**25-t**24+t**22-2*t**21+t**19-t**18+2*t**16-t**15-t**10+2*t**9-t**7+t**6-2*t**4+t**3-t)', '21111': '(-5*t**20+9*t**19-7*t**18+4*t**17+11*t**16-15*t**15+15*t**14-10*t**13-6*t**12+2*t**11-14*t**10+9*t**9-4*t**8+3*t**7+10*t**6-4*t**5+9*t**4)/(1+t**17-2*t**16+2*t**15-t**14-2*t**13+4*t**12-5*t**11+4*t**10-t**9-t**8+4*t**7-5*t**6+4*t**5-2*t**4-t**3+2*t**2-2*t)', '2211': '(-5*t**18+9*t**16+7*t**15+16*t**14+7*t**13-18*t**12-24*t**11-25*t**10-23*t**9+2*t**8+22*t**7+19*t**6+22*t**5+12*t**4)/(1+t**15-t**13-2*t**11-t**10+2*t**9+t**8+t**7+2*t**6-t**5-2*t**4-t**2)', '222': '(-2*t**24+5*t**23-3*t**22+3*t**21-3*t**19+2*t**18-4*t**17-t**16+t**15-3*t**14+t**13+8*t**12-12*t**11+8*t**10-t**9-4*t**8+5*t**7+3*t**6-3*t**5+7*t**4)/(1+t**21-2*t**20+t**19+t**18-3*t**17+3*t**16-t**15-t**14+2*t**13-t**12-t**9+2*t**8-t**7-t**6+3*t**5-3*t**4+t**3+t**2-2*t)', '3111': '(-4*t**24+11*t**23-5*t**22+8*t**20-11*t**19+t**18-8*t**16+t**15+t**13+8*t**12-14*t**11+9*t**10-6*t**8+11*t**7+3*t**6-3*t**5+12*t**4)/(1+t**21-2*t**20+t**19+t**18-3*t**17+3*t**16-t**15-t**14+2*t**13-t**12-t**9+2*t**8-t**7-t**6+3*t**5-3*t**4+t**3+t**2-2*t)', '321': '(-4*t**20+10*t**19+9*t**18-8*t**17+6*t**16+11*t**15-15*t**14-26*t**13-5*t**12-5*t**11-17*t**10-5*t**9+23*t**8+19*t**7+4*t**6+16*t**5+15*t**4)/(1+t**17-t**16-t**15+2*t**14-t**13-2*t**12+t**11+2*t**10-t**9-t**8+2*t**7+t**6-2*t**5-t**4+2*t**3-t**2-t)', '33': '(2*t**23-t**21+3*t**20-6*t**19+4*t**18-5*t**17-2*t**16+5*t**15-7*t**14+5*t**13+2*t**12-6*t**11+3*t**10+5*t**9-9*t**8+10*t**7-t**6+t**5+4*t**4)/(1+t**21-2*t**20+t**19+t**18-3*t**17+3*t**16-t**15-t**14+2*t**13-t**12-t**9+2*t**8-t**7-t**6+3*t**5-3*t**4+t**3+t**2-2*t)', '411': '(-t**24+8*t**23-3*t**22-2*t**21+6*t**20-10*t**19-t**17-6*t**16+t**15+2*t**14+t**13+2*t**12-7*t**11+4*t**10+4*t**9-6*t**8+12*t**7+t**6+2*t**5+7*t**4)/(1+t**21-2*t**20+t**19+t**18-3*t**17+3*t**16-t**15-t**14+2*t**13-t**12-t**9+2*t**8-t**7-t**6+3*t**5-3*t**4+t**3+t**2-2*t)', '42': '(-t**18+6*t**17+9*t**16+7*t**15+4*t**14-10*t**13-24*t**12-24*t**11-16*t**10-5*t**9+15*t**8+22*t**7+19*t**6+13*t**5+6*t**4)/(1+t**15-t**13-2*t**11-t**10+2*t**9+t**8+t**7+2*t**6-t**5-2*t**4-t**2)', '51': '(4*t**19-t**18+t**17+3*t**16-8*t**15+2*t**14-7*t**13-5*t**12-2*t**10+6*t**9+t**8+6*t**7+3*t**6+2*t**5+2*t**4)/(1+t**17-2*t**16+2*t**15-t**14-2*t**13+4*t**12-5*t**11+4*t**10-t**9-t**8+4*t**7-5*t**6+4*t**5-2*t**4-t**3+2*t**2-2*t)', '6': '(t**27+t**25-t**22-t**21-2*t**20-t**19-t**17+t**16-t**15+t**14-t**13+t**12+3*t**10+t**9+3*t**8+t**7+t**6+t**5)/(1+t**25-t**24+t**22-2*t**21+t**19-t**18+2*t**16-t**15-t**10+2*t**9-t**7+t**6-2*t**4+t**3-t)', 'author': 'Fabien Clery', 'description': 'Hilbert-Poincare series for the sum of the canonical $S_6$-submodule $M_k^p$ ($k\\ge 4$) of $M_{k,20}cusp(Gamma_0(2))$ corresponding to the irreducible $S_6$ representation defined by the partition $p$. The action of $S_6$ is given by identifying $S_6$ with the quotient $SP(4,Z)/Gamma(2)$ and letting act $SP(4,Z)$ in the natural way.', 'group': 'Gamma(2)', 'id': 69, 'note': ['if $j\\\\ge2 then only $k\\\\ge 4$'], 'space': 'cusp', 'sym_power': 20, 'title': 'Hilbert Poincare series'}