Formats: - HTML - YAML - JSON - 2025-12-16T03:31:57.214251
Query: /api/smf_dims/?_offset=0
Show schema

{'111111': '(-t**30+2*t**26+t**25+t**24-2*t**21-2*t**20-2*t**19+2*t**15-t**14+t**13+2*t**11+t**10+4*t**9+3*t**8+3*t**7+2*t**6+2*t**5+t**4)/(1+t**27-t**23-t**22-t**21+t**18+t**17+t**16-t**15-t**12+t**11+t**10+t**9-t**6-t**5-t**4)', '21111': '(-3*t**22+t**19+6*t**18+t**17+6*t**16-t**15-3*t**14-3*t**13-14*t**12-2*t**11-5*t**10+2*t**9+8*t**8+3*t**7+12*t**6+2*t**5+7*t**4)/(1+t**19-t**18+t**17-t**16-t**15+t**14-3*t**13+3*t**12-2*t**11+2*t**10+2*t**9-2*t**8+3*t**7-3*t**6+t**5-t**4-t**3+t**2-t)', '2211': '(-2*t**18+4*t**16+3*t**15+7*t**14+3*t**13-9*t**12-12*t**11-12*t**10-11*t**9+2*t**8+13*t**7+11*t**6+13*t**5+7*t**4)/(1+t**15-t**13-2*t**11-t**10+2*t**9+t**8+t**7+2*t**6-t**5-2*t**4-t**2)', '222': '(-t**26+2*t**24+2*t**22-2*t**20+t**19-5*t**18-2*t**16-t**15+4*t**14+t**12+t**10+5*t**8-2*t**7+9*t**6-t**5+6*t**4)/(1+t**23-t**22-t**19+t**18-t**17+t**16+t**13-t**12-t**11+t**10+t**7-t**6+t**5-t**4-t)', '3111': '(-2*t**26+3*t**25+2*t**24+2*t**23+2*t**22-2*t**21-3*t**20-3*t**19-6*t**18-2*t**17-3*t**16+t**15+7*t**14-2*t**13+3*t**12-2*t**11+3*t**10+3*t**9+8*t**8+4*t**7+10*t**6+4*t**5+7*t**4)/(1+t**23-t**22-t**19+t**18-t**17+t**16+t**13-t**12-t**11+t**10+t**7-t**6+t**5-t**4-t)', '321': '(-2*t**22+t**21+7*t**20+6*t**19+3*t**18+3*t**17+2*t**16-12*t**15-25*t**14-19*t**13-12*t**12-10*t**11+t**10+21*t**9+30*t**8+24*t**7+21*t**6+18*t**5+11*t**4)/(1+t**19-t**17-t**14-2*t**13+t**12+2*t**11+2*t**8+t**7-2*t**6-t**5-t**2)', '33': '(2*t**25+t**24-t**23+2*t**22-4*t**21-3*t**19-3*t**18-t**16+3*t**15+3*t**11-t**10+6*t**9+6*t**7+3*t**6+3*t**5+t**4)/(1+t**23-t**22-t**19+t**18-t**17+t**16+t**13-t**12-t**11+t**10+t**7-t**6+t**5-t**4-t)', '411': '(4*t**25+2*t**24+t**23-t**22-4*t**21-3*t**20-6*t**19-3*t**18-3*t**17+3*t**15+3*t**14-t**13+3*t**11+3*t**10+7*t**9+6*t**8+9*t**7+6*t**6+5*t**5+3*t**4)/(1+t**23-t**22-t**19+t**18-t**17+t**16+t**13-t**12-t**11+t**10+t**7-t**6+t**5-t**4-t)', '42': '(t**17+4*t**16+3*t**15-t**13-10*t**12-12*t**11-6*t**10-4*t**9+4*t**8+13*t**7+11*t**6+7*t**5+7*t**4)/(1+t**15-t**13-2*t**11-t**10+2*t**9+t**8+t**7+2*t**6-t**5-2*t**4-t**2)', '51': '(t**21+3*t**20+3*t**18-3*t**17-2*t**16-5*t**15-8*t**14-2*t**13-7*t**12+5*t**11+3*t**10+7*t**9+8*t**8+5*t**7+6*t**6+t**5+2*t**4)/(1+t**19-t**18+t**17-t**16-t**15+t**14-3*t**13+3*t**12-2*t**11+2*t**10+2*t**9-2*t**8+3*t**7-3*t**6+t**5-t**4-t**3+t**2-t)', '6': '(t**28+t**26-t**24-t**23-2*t**22-t**21-2*t**20+t**17+t**15+t**14+3*t**12+2*t**11+4*t**10+2*t**9+4*t**8+t**7+2*t**6+t**4)/(1+t**27-t**23-t**22-t**21+t**18+t**17+t**16-t**15-t**12+t**11+t**10+t**9-t**6-t**5-t**4)', 'author': 'Fabien Clery', 'description': 'Hilbert-Poincare series for the sum of the canonical $S_6$-submodule $M_k^p$ ($k\\ge 4$) of $M_{k,16}(Gamma_0(2))$ corresponding to the irreducible $S_6$ representation defined by the partition $p$. The action of $S_6$ is given by identifying $S_6$ with the quotient $SP(4,Z)/Gamma(2)$ and letting act $SP(4,Z)$ in the natural way.', 'group': 'Gamma(2)', 'id': 64, 'note': ['if $j\\\\ge2 then only $k\\\\ge 4$'], 'space': 'total', 'sym_power': 16, 'title': 'Hilbert Poincare series'}