Query:
/api/smf_dims/?_offset=0
{'111111': '(-9*t**24+14*t**23+t**22-11*t**21+24*t**20-18*t**19+2*t**18+7*t**17-15*t**16+2*t**15-3*t**14+2*t**13+11*t**12-17*t**11+14*t**9-28*t**8+21*t**7-t**6-10*t**5+17*t**4)/(1+t**21-2*t**20+t**19+t**18-3*t**17+3*t**16-t**15-t**14+2*t**13-t**12-t**9+2*t**8-t**7-t**6+3*t**5-3*t**4+t**3+t**2-2*t)', '21111': '(-36*t**20+62*t**19-34*t**18+18*t**17+100*t**16-110*t**15+119*t**14-79*t**13-55*t**12+27*t**11-163*t**10+102*t**9-74*t**8+22*t**7+84*t**6-40*t**5+72*t**4)/(1+t**17-2*t**16+2*t**15-t**14-2*t**13+4*t**12-5*t**11+4*t**10-t**9-t**8+4*t**7-5*t**6+4*t**5-2*t**4-t**3+2*t**2-2*t)', '2211': '(-49*t**14+49*t**13+93*t**12-11*t**11+90*t**10-113*t**9-198*t**8+13*t**7-39*t**6+67*t**5+107*t**4)/(1+t**11-t**10-t**9+t**8-2*t**7+2*t**6+2*t**5-2*t**4+t**3-t**2-t)', '222': '(-24*t**24+45*t**23+5*t**22-28*t**21+65*t**20-42*t**19-15*t**18+27*t**17-56*t**16+4*t**15-7*t**14+4*t**13+33*t**12-56*t**11+3*t**10+33*t**9-73*t**8+47*t**7+23*t**6-38*t**5+65*t**4)/(1+t**21-2*t**20+t**19+t**18-3*t**17+3*t**16-t**15-t**14+2*t**13-t**12-t**9+2*t**8-t**7-t**6+3*t**5-3*t**4+t**3+t**2-2*t)', '3111': '(-48*t**24+102*t**23-6*t**22-50*t**21+136*t**20-107*t**19-11*t**18+45*t**17-109*t**16+4*t**15-2*t**14+4*t**13+55*t**12-107*t**11+13*t**10+53*t**9-136*t**8+110*t**7+18*t**6-50*t**5+116*t**4)/(1+t**21-2*t**20+t**19+t**18-3*t**17+3*t**16-t**15-t**14+2*t**13-t**12-t**9+2*t**8-t**7-t**6+3*t**5-3*t**4+t**3+t**2-2*t)', '321': '(-63*t**16+147*t**15+59*t**14-226*t**13+146*t**12+65*t**11-109*t**10-142*t**9-53*t**8+220*t**7-140*t**6-60*t**5+168*t**4)/(1+t**13-2*t**12+3*t**10-3*t**9+t**7+t**6-3*t**4+3*t**3-2*t)', '33': '(-14*t**24+40*t**23-2*t**22-18*t**21+54*t**20-52*t**19+7*t**18-40*t**16+9*t**15-13*t**14+9*t**13+20*t**12-50*t**11+9*t**10+26*t**9-66*t**8+60*t**7-10*t**5+46*t**4)/(1+t**21-2*t**20+t**19+t**18-3*t**17+3*t**16-t**15-t**14+2*t**13-t**12-t**9+2*t**8-t**7-t**6+3*t**5-3*t**4+t**3+t**2-2*t)', '411': '(-30*t**24+88*t**23-10*t**22-36*t**21+108*t**20-100*t**19-3*t**18+21*t**17-87*t**16+3*t**15+2*t**14+3*t**13+33*t**12-87*t**11+13*t**10+40*t**9-108*t**8+104*t**7+6*t**6-20*t**5+90*t**4)/(1+t**21-2*t**20+t**19+t**18-3*t**17+3*t**16-t**15-t**14+2*t**13-t**12-t**9+2*t**8-t**7-t**6+3*t**5-3*t**4+t**3+t**2-2*t)', '42': '(-24*t**14+44*t**13+73*t**12-11*t**11+30*t**10-93*t**9-158*t**8+13*t**7-3*t**6+50*t**5+88*t**4)/(1+t**11-t**10-t**9+t**8-2*t**7+2*t**6+2*t**5-2*t**4+t**3-t**2-t)', '51': '(-9*t**20+37*t**19-8*t**18+14*t**17+50*t**16-65*t**15+45*t**14-61*t**13-48*t**12+2*t**11-84*t**10+61*t**9-30*t**8+30*t**7+51*t**6-10*t**5+40*t**4)/(1+t**17-2*t**16+2*t**15-t**14-2*t**13+4*t**12-5*t**11+4*t**10-t**9-t**8+4*t**7-5*t**6+4*t**5-2*t**4-t**3+2*t**2-2*t)', '6': '(-t**24+5*t**23+3*t**22-5*t**21+6*t**20-3*t**19-6*t**18+4*t**17-8*t**16+2*t**15-3*t**14+2*t**13+3*t**12-9*t**11+6*t**9-8*t**8+4*t**7+9*t**6-8*t**5+10*t**4)/(1+t**21-2*t**20+t**19+t**18-3*t**17+3*t**16-t**15-t**14+2*t**13-t**12-t**9+2*t**8-t**7-t**6+3*t**5-3*t**4+t**3+t**2-2*t)', 'author': 'Fabien Clery', 'description': 'Hilbert-Poincare series for the sum of the canonical $S_6$-submodule $M_k^p$ ($k\\ge 4$) of $M_{k,44}(Gamma_0(2))$ corresponding to the irreducible $S_6$ representation defined by the partition $p$. The action of $S_6$ is given by identifying $S_6$ with the quotient $SP(4,Z)/Gamma(2)$ and letting act $SP(4,Z)$ in the natural way.', 'group': 'Gamma(2)', 'id': 60, 'note': ['if $j\\\\ge2 then only $k\\\\ge 4$'], 'space': 'total', 'sym_power': 44, 'title': 'Hilbert Poincare series'}