Formats: - HTML - YAML - JSON - 2025-12-16T03:32:24.909006
Query: /api/smf_dims/?_offset=0
Show schema

{'111111': '(-7*t**28+5*t**27+3*t**26-4*t**25+14*t**24+6*t**23-3*t**22+4*t**21-17*t**19-2*t**18-5*t**17-2*t**16-4*t**15-3*t**14+6*t**13-14*t**12-5*t**11+5*t**10-3*t**9+20*t**7+2*t**6+6*t**5+11*t**4)/(1+t**25-t**24+t**22-2*t**21+t**19-t**18+2*t**16-t**15-t**10+2*t**9-t**7+t**6-2*t**4+t**3-t)', '21111': '(-24*t**20+45*t**19-31*t**18+24*t**17+53*t**16-69*t**15+82*t**14-68*t**13-17*t**12-2*t**11-89*t**10+62*t**9-50*t**8+27*t**7+44*t**6-18*t**5+44*t**4)/(1+t**17-2*t**16+2*t**15-t**14-2*t**13+4*t**12-5*t**11+4*t**10-t**9-t**8+4*t**7-5*t**6+4*t**5-2*t**4-t**3+2*t**2-2*t)', '2211': '(-33*t**18+60*t**16+52*t**15+113*t**14+68*t**13-94*t**12-144*t**11-163*t**10-176*t**9-27*t**8+102*t**7+92*t**6+118*t**5+71*t**4)/(1+t**15-t**13-2*t**11-t**10+2*t**9+t**8+t**7+2*t**6-t**5-2*t**4-t**2)', '222': '(-14*t**24+33*t**23-9*t**22-3*t**21+30*t**20-31*t**19+4*t**18+t**17-28*t**16+5*t**15-8*t**14+4*t**13+23*t**12-45*t**11+18*t**10+7*t**9-38*t**8+36*t**7+4*t**6-12*t**5+36*t**4)/(1+t**21-2*t**20+t**19+t**18-3*t**17+3*t**16-t**15-t**14+2*t**13-t**12-t**9+2*t**8-t**7-t**6+3*t**5-3*t**4+t**3+t**2-2*t)', '3111': '(-30*t**24+66*t**23-6*t**22-30*t**21+84*t**20-69*t**19-8*t**18+28*t**17-70*t**16+t**15+3*t**14+t**13+34*t**12-66*t**11+10*t**10+31*t**9-81*t**8+70*t**7+13*t**6-30*t**5+75*t**4)/(1+t**21-2*t**20+t**19+t**18-3*t**17+3*t**16-t**15-t**14+2*t**13-t**12-t**9+2*t**8-t**7-t**6+3*t**5-3*t**4+t**3+t**2-2*t)', '321': '(-39*t**20+60*t**19+85*t**18-54*t**17+44*t**16+113*t**15-53*t**14-174*t**13-55*t**12-18*t**11-141*t**10-101*t**9+99*t**8+120*t**7-16*t**6+78*t**5+104*t**4)/(1+t**17-t**16-t**15+2*t**14-t**13-2*t**12+t**11+2*t**10-t**9-t**8+2*t**7+t**6-2*t**5-t**4+2*t**3-t**2-t)', '33': '(-9*t**24+27*t**23-4*t**22-9*t**21+33*t**20-36*t**19+9*t**18-6*t**17-23*t**16+7*t**15-11*t**14+8*t**13+14*t**12-35*t**11+9*t**10+17*t**9-44*t**8+43*t**7-3*t**6-3*t**5+29*t**4)/(1+t**21-2*t**20+t**19+t**18-3*t**17+3*t**16-t**15-t**14+2*t**13-t**12-t**9+2*t**8-t**7-t**6+3*t**5-3*t**4+t**3+t**2-2*t)', '411': '(-18*t**24+54*t**23-3*t**22-27*t**21+69*t**20-63*t**19-6*t**18+15*t**17-57*t**16+4*t**15-t**14+4*t**13+22*t**12-56*t**11+7*t**10+31*t**9-70*t**8+67*t**7+9*t**6-15*t**5+60*t**4)/(1+t**21-2*t**20+t**19+t**18-3*t**17+3*t**16-t**15-t**14+2*t**13-t**12-t**9+2*t**8-t**7-t**6+3*t**5-3*t**4+t**3+t**2-2*t)', '42': '(-13*t**18+25*t**17+60*t**16+51*t**15+64*t**14-2*t**13-119*t**12-144*t**11-132*t**10-102*t**9+23*t**8+102*t**7+92*t**6+88*t**5+46*t**4)/(1+t**15-t**13-2*t**11-t**10+2*t**9+t**8+t**7+2*t**6-t**5-2*t**4-t**2)', '51': '(-5*t**20+27*t**19-11*t**18+17*t**17+23*t**16-41*t**15+29*t**14-50*t**13-19*t**12-13*t**11-37*t**10+34*t**9-17*t**8+30*t**7+22*t**6+3*t**5+21*t**4)/(1+t**17-2*t**16+2*t**15-t**14-2*t**13+4*t**12-5*t**11+4*t**10-t**9-t**8+4*t**7-5*t**6+4*t**5-2*t**4-t**3+2*t**2-2*t)', '6': '(6*t**27+t**26+5*t**25+4*t**24-4*t**22-4*t**21-8*t**20-7*t**19-4*t**18-5*t**17+2*t**16-7*t**15-t**14-t**13-4*t**12-t**11+9*t**10+3*t**9+8*t**8+10*t**7+4*t**6+4*t**5+3*t**4)/(1+t**25-t**24+t**22-2*t**21+t**19-t**18+2*t**16-t**15-t**10+2*t**9-t**7+t**6-2*t**4+t**3-t)', 'author': 'Fabien Clery', 'description': 'Hilbert-Poincare series for the sum of the canonical $S_6$-submodule $M_k^p$ ($k\\ge 4$) of $M_{k,38}cusp(Gamma_0(2))$ corresponding to the irreducible $S_6$ representation defined by the partition $p$. The action of $S_6$ is given by identifying $S_6$ with the quotient $SP(4,Z)/Gamma(2)$ and letting act $SP(4,Z)$ in the natural way.', 'group': 'Gamma(2)', 'id': 59, 'note': ['if $j\\\\ge2 then only $k\\\\ge 4$'], 'space': 'cusp', 'sym_power': 38, 'title': 'Hilbert Poincare series'}