Query:
/api/smf_dims/?_offset=0
{'111111': '(-52*t**26+36*t**25+39*t**24+29*t**23+84*t**22-12*t**21+40*t**20-46*t**19-40*t**18-43*t**17-90*t**16+2*t**15+53*t**14-34*t**13-38*t**12-27*t**11-83*t**10+14*t**9-39*t**8+47*t**7+41*t**6+45*t**5+91*t**4)/(1+t**23-t**22-t**19+t**18-t**17+t**16+t**13-t**12-t**11+t**10+t**7-t**6+t**5-t**4-t)', '21111': '(-208*t**22+180*t**21-33*t**20+339*t**19+534*t**18+110*t**17+720*t**16-445*t**15-38*t**14-749*t**13-1165*t**12-298*t**11-911*t**10+277*t**9+87*t**8+422*t**7+647*t**6+201*t**5+415*t**4)/(1+t**19-t**18+t**17-t**16-t**15+t**14-3*t**13+3*t**12-2*t**11+2*t**10+2*t**9-2*t**8+3*t**7-3*t**6+t**5-t**4-t**3+t**2-t)', '2211': '(-328*t**14+328*t**13+636*t**12-42*t**11+620*t**10-706*t**9-1316*t**8+46*t**7-288*t**6+383*t**5+684*t**4)/(1+t**11-t**10-t**9+t**8-2*t**7+2*t**6+2*t**5-2*t**4+t**3-t**2-t)', '222': '(-175*t**26+170*t**25+179*t**24+156*t**23+322*t**22-28*t**21+112*t**20-206*t**19-233*t**18-193*t**17-376*t**16+5*t**15+184*t**14-164*t**13-170*t**12-151*t**11-313*t**10+33*t**9-103*t**8+211*t**7+242*t**6+198*t**5+385*t**4)/(1+t**23-t**22-t**19+t**18-t**17+t**16+t**13-t**12-t**11+t**10+t**7-t**6+t**5-t**4-t)', '3111': '(-343*t**26+364*t**25+343*t**24+322*t**23+630*t**22-84*t**21+232*t**20-442*t**19-440*t**18-400*t**17-726*t**16+12*t**15+359*t**14-352*t**13-327*t**12-310*t**11-614*t**10+97*t**9-216*t**8+454*t**7+456*t**6+413*t**5+742*t**4)/(1+t**23-t**22-t**19+t**18-t**17+t**16+t**13-t**12-t**11+t**10+t**7-t**6+t**5-t**4-t)', '321': '(-486*t**18+577*t**17+1032*t**16-70*t**15-73*t**14-76*t**13+894*t**12-1221*t**11-2147*t**10+80*t**9+85*t**8+87*t**7-396*t**6+655*t**5+1127*t**4)/(1+t**15-t**14-t**13+t**12-2*t**9+2*t**8+2*t**7-2*t**6+t**3-t**2-t)', '33': '(-138*t**26+180*t**25+175*t**24+152*t**23+289*t**22-49*t**21+96*t**20-235*t**19-211*t**18-207*t**17-325*t**16+8*t**15+144*t**14-172*t**13-169*t**12-144*t**11-283*t**10+57*t**9-90*t**8+244*t**7+217*t**6+215*t**5+331*t**4)/(1+t**23-t**22-t**19+t**18-t**17+t**16+t**13-t**12-t**11+t**10+t**7-t**6+t**5-t**4-t)', '411': '(-273*t**26+371*t**25+343*t**24+315*t**23+560*t**22-98*t**21+175*t**20-462*t**19-427*t**18-406*t**17-644*t**16+15*t**15+287*t**14-357*t**13-329*t**12-300*t**11-546*t**10+112*t**9-161*t**8+476*t**7+441*t**6+420*t**5+658*t**4)/(1+t**23-t**22-t**19+t**18-t**17+t**16+t**13-t**12-t**11+t**10+t**7-t**6+t**5-t**4-t)', '42': '(-228*t**14+318*t**13+546*t**12-42*t**11+400*t**10-666*t**9-1136*t**8+46*t**7-167*t**6+351*t**5+595*t**4)/(1+t**11-t**10-t**9+t**8-2*t**7+2*t**6+2*t**5-2*t**4+t**3-t**2-t)', '51': '(-105*t**22+184*t**21+73*t**20+333*t**19+430*t**18+93*t**17+413*t**16-466*t**15-237*t**14-750*t**13-944*t**12-276*t**11-595*t**10+296*t**9+178*t**8+431*t**7+528*t**6+198*t**5+301*t**4)/(1+t**19-t**18+t**17-t**16-t**15+t**14-3*t**13+3*t**12-2*t**11+2*t**10+2*t**9-2*t**8+3*t**7-3*t**6+t**5-t**4-t**3+t**2-t)', '6': '(-18*t**26+33*t**25+41*t**24+26*t**23+47*t**22-6*t**21+t**20-36*t**19-50*t**18-33*t**17-59*t**16+t**15+20*t**14-33*t**13-39*t**12-25*t**11-45*t**10+7*t**9+t**8+37*t**7+52*t**6+34*t**5+61*t**4)/(1+t**23-t**22-t**19+t**18-t**17+t**16+t**13-t**12-t**11+t**10+t**7-t**6+t**5-t**4-t)', 'author': 'Fabien Clery', 'description': 'Hilbert-Poincare series for the sum of the canonical $S_6$-submodule $M_k^p$ ($k\\ge 4$) of $M_{k,84}(Gamma_0(2))$ corresponding to the irreducible $S_6$ representation defined by the partition $p$. The action of $S_6$ is given by identifying $S_6$ with the quotient $SP(4,Z)/Gamma(2)$ and letting act $SP(4,Z)$ in the natural way.', 'group': 'Gamma(2)', 'id': 56, 'note': ['if $j\\\\ge2 then only $k\\\\ge 4$'], 'space': 'total', 'sym_power': 84, 'title': 'Hilbert Poincare series'}