Query:
/api/smf_dims/?_offset=0
{'111111': '(t**15+t**13+t**12+2*t**11+t**10+2*t**9+t**8+t**7+t**5)/(1+t**27-t**23-t**22-t**21+t**18+t**17+t**16-t**15-t**12+t**11+t**10+t**9-t**6-t**5-t**4)', '21111': '(-t**22+t**21-t**20+2*t**19+2*t**16-3*t**15+2*t**14-4*t**13-t**11+t**10+2*t**9+3*t**8+2*t**7+3*t**6+t**5+2*t**4)/(1+t**19-t**18+t**17-t**16-t**15+t**14-3*t**13+3*t**12-2*t**11+2*t**10+2*t**9-2*t**8+3*t**7-3*t**6+t**5-t**4-t**3+t**2-t)', '2211': '(-t**18+t**16+t**15+3*t**14-3*t**12-3*t**11-4*t**10-2*t**9+3*t**8+5*t**7+4*t**6+5*t**5+2*t**4)/(1+t**15-t**13-2*t**11-t**10+2*t**9+t**8+t**7+2*t**6-t**5-2*t**4-t**2)', '222': '(t**25-t**24+t**23-t**22-t**20-t**19+t**18-2*t**17+3*t**16-t**15+2*t**14-2*t**13+4*t**12-2*t**11+4*t**10-t**9+4*t**8+2*t**6+t**5)/(1+t**23-t**22-t**19+t**18-t**17+t**16+t**13-t**12-t**11+t**10+t**7-t**6+t**5-t**4-t)', '3111': '(t**25+t**23-t**22-t**21-t**20-t**19-t**18-t**17+2*t**16+4*t**14-t**13+4*t**12-t**11+4*t**10+t**9+5*t**8+t**7+4*t**6+t**5+2*t**4)/(1+t**23-t**22-t**19+t**18-t**17+t**16+t**13-t**12-t**11+t**10+t**7-t**6+t**5-t**4-t)', '321': '(t**21+t**20+t**19-2*t**16-6*t**15-5*t**14-3*t**13+t**11+8*t**10+11*t**9+12*t**8+9*t**7+8*t**6+6*t**5+2*t**4)/(1+t**19-t**17-t**14-2*t**13+t**12+2*t**11+2*t**8+t**7-2*t**6-t**5-t**2)', '33': '(t**25-t**23+t**22-2*t**21-t**19-t**18+t**17+2*t**15+t**13+3*t**11-t**10+4*t**9-t**8+3*t**7+t**6+t**5)/(1+t**23-t**22-t**19+t**18-t**17+t**16+t**13-t**12-t**11+t**10+t**7-t**6+t**5-t**4-t)', '411': '(t**25+t**24-t**23-2*t**21-t**20-t**19-t**18+t**17+2*t**15+2*t**14+t**13+3*t**11+2*t**10+4*t**9+3*t**8+3*t**7+3*t**6+t**5+t**4)/(1+t**23-t**22-t**19+t**18-t**17+t**16+t**13-t**12-t**11+t**10+t**7-t**6+t**5-t**4-t)', '42': '(2*t**17+t**16-t**14-5*t**13-5*t**12-3*t**11+t**10+4*t**9+7*t**8+5*t**7+4*t**6+t**5)/(1+t**15-t**13-2*t**11-t**10+2*t**9+t**8+t**7+2*t**6-t**5-2*t**4-t**2)', '51': '(t**21+t**19-t**18-t**17-t**16-4*t**15+t**14-3*t**13+2*t**12+2*t**11+3*t**10+5*t**9+t**8+4*t**7+t**5)/(1+t**19-t**18+t**17-t**16-t**15+t**14-3*t**13+3*t**12-2*t**11+2*t**10+2*t**9-2*t**8+3*t**7-3*t**6+t**5-t**4-t**3+t**2-t)', '6': '(t**29-t**25-2*t**24-t**23-t**22-t**21+t**20+2*t**18+2*t**16+t**15+2*t**14+t**13+3*t**12+t**11+2*t**10+t**9)/(1+t**27-t**23-t**22-t**21+t**18+t**17+t**16-t**15-t**12+t**11+t**10+t**9-t**6-t**5-t**4)', 'author': 'Fabien Clery', 'description': 'Hilbert-Poincare series for the sum of the canonical $S_6$-submodule $M_k^p$ ($k\\ge 4$) of $M_{k,10}cusp(Gamma_0(2))$ corresponding to the irreducible $S_6$ representation defined by the partition $p$. The action of $S_6$ is given by identifying $S_6$ with the quotient $SP(4,Z)/Gamma(2)$ and letting act $SP(4,Z)$ in the natural way.', 'group': 'Gamma(2)', 'id': 55, 'note': ['if $j\\\\ge2 then only $k\\\\ge 4$'], 'space': 'cusp', 'sym_power': 10, 'title': 'Hilbert Poincare series'}