Query:
/api/smf_dims/?_offset=0
{'111111': '(-17*t**28+11*t**27+11*t**26-8*t**25+38*t**24+20*t**23-4*t**22+10*t**21-t**20-43*t**19-13*t**18-14*t**17-8*t**16-11*t**15-12*t**14+14*t**13-39*t**12-20*t**11+9*t**10-10*t**9+49*t**7+12*t**6+14*t**5+31*t**4)/(1+t**25-t**24+t**22-2*t**21+t**19-t**18+2*t**16-t**15-t**10+2*t**9-t**7+t**6-2*t**4+t**3-t)', '21111': '(-69*t**20+123*t**19-68*t**18+43*t**17+191*t**16-210*t**15+239*t**14-169*t**13-91*t**12+36*t**11-316*t**10+200*t**9-159*t**8+53*t**7+152*t**6-72*t**5+136*t**4)/(1+t**17-2*t**16+2*t**15-t**14-2*t**13+4*t**12-5*t**11+4*t**10-t**9-t**8+4*t**7-5*t**6+4*t**5-2*t**4-t**3+2*t**2-2*t)', '2211': '(-99*t**18+190*t**16+172*t**15+356*t**14+234*t**13-265*t**12-435*t**11-499*t**10-558*t**9-124*t**8+277*t**7+256*t**6+339*t**5+213*t**4)/(1+t**15-t**13-2*t**11-t**10+2*t**9+t**8+t**7+2*t**6-t**5-2*t**4-t**2)', '222': '(-50*t**24+97*t**23+6*t**22-57*t**21+141*t**20-95*t**19-21*t**18+53*t**17-113*t**16+6*t**15-10*t**14+6*t**13+61*t**12-111*t**11+4*t**10+64*t**9-152*t**8+102*t**7+31*t**6-67*t**5+124*t**4)/(1+t**21-2*t**20+t**19+t**18-3*t**17+3*t**16-t**15-t**14+2*t**13-t**12-t**9+2*t**8-t**7-t**6+3*t**5-3*t**4+t**3+t**2-2*t)', '3111': '(-100*t**24+210*t**23-10*t**22-105*t**21+290*t**20-221*t**19-17*t**18+95*t**17-222*t**16+5*t**15-2*t**14+5*t**13+108*t**12-215*t**11+18*t**10+109*t**9-290*t**8+225*t**7+25*t**6-100*t**5+230*t**4)/(1+t**21-2*t**20+t**19+t**18-3*t**17+3*t**16-t**15-t**14+2*t**13-t**12-t**9+2*t**8-t**7-t**6+3*t**5-3*t**4+t**3+t**2-2*t)', '321': '(-137*t**20+173*t**19+301*t**18-170*t**17+139*t**16+411*t**15-107*t**14-538*t**13-189*t**12-33*t**11-470*t**10-391*t**9+253*t**8+373*t**7-90*t**6+211*t**5+340*t**4)/(1+t**17-t**16-t**15+2*t**14-t**13-2*t**12+t**11+2*t**10-t**9-t**8+2*t**7+t**6-2*t**5-t**4+2*t**3-t**2-t)', '33': '(-34*t**24+88*t**23-4*t**22-40*t**21+120*t**20-105*t**19+8*t**18+14*t**17-88*t**16+11*t**15-16*t**14+11*t**13+42*t**12-101*t**11+13*t**10+50*t**9-135*t**8+115*t**7+t**6-27*t**5+96*t**4)/(1+t**21-2*t**20+t**19+t**18-3*t**17+3*t**16-t**15-t**14+2*t**13-t**12-t**9+2*t**8-t**7-t**6+3*t**5-3*t**4+t**3+t**2-2*t)', '411': '(-70*t**24+185*t**23-15*t**22-80*t**21+240*t**20-205*t**19-6*t**18+56*t**17-186*t**16+4*t**15+2*t**14+4*t**13+74*t**12-184*t**11+19*t**10+85*t**9-240*t**8+210*t**7+10*t**6-55*t**5+190*t**4)/(1+t**21-2*t**20+t**19+t**18-3*t**17+3*t**16-t**15-t**14+2*t**13-t**12-t**9+2*t**8-t**7-t**6+3*t**5-3*t**4+t**3+t**2-2*t)', '42': '(-57*t**18+36*t**17+190*t**16+172*t**15+259*t**14+120*t**13-301*t**12-435*t**11-443*t**10-426*t**9-52*t**8+277*t**7+256*t**6+283*t**5+178*t**4)/(1+t**15-t**13-2*t**11-t**10+2*t**9+t**8+t**7+2*t**6-t**5-2*t**4-t**2)', '51': '(-24*t**20+80*t**19-23*t**18+36*t**17+108*t**16-132*t**15+112*t**14-133*t**13-85*t**12-4*t**11-185*t**10+126*t**9-80*t**8+61*t**7+101*t**6-24*t**5+85*t**4)/(1+t**17-2*t**16+2*t**15-t**14-2*t**13+4*t**12-5*t**11+4*t**10-t**9-t**8+4*t**7-5*t**6+4*t**5-2*t**4-t**3+2*t**2-2*t)', '6': '(-10*t**16-8*t**17-19*t**18-25*t**19-13*t**20-4*t**21-8*t**22+12*t**23+20*t**24+4*t**25+13*t**26+9*t**27-3*t**28+19*t**4+7*t**5+19*t**6+30*t**7+13*t**8+3*t**9+15*t**10-13*t**11-20*t**12+t**13-13*t**14-10*t**15)/(1+t**25-t**24+t**22-2*t**21+t**19-t**18+2*t**16-t**15-t**10+2*t**9-t**7+t**6-2*t**4+t**3-t)', 'author': 'Fabien Clery', 'description': 'Hilbert-Poincare series for the sum of the canonical $S_6$-submodule $M_k^p$ ($k\\ge 4$) of $M_{k,56}(Gamma_0(2))$ corresponding to the irreducible $S_6$ representation defined by the partition $p$. The action of $S_6$ is given by identifying $S_6$ with the quotient $SP(4,Z)/Gamma(2)$ and letting act $SP(4,Z)$ in the natural way.', 'group': 'Gamma(2)', 'id': 52, 'note': ['if $j\\\\ge2 then only $k\\\\ge 4$'], 'space': 'total', 'sym_power': 56, 'title': 'Hilbert Poincare series'}