Query:
/api/smf_dims/?_offset=0
{'111111': '(-t**30+t**26+t**25+t**24-t**20+t**18+t**15-t**14+t**11+t**9+t**8+t**7+t**5)/(1+t**27-t**23-t**22-t**21+t**18+t**17+t**16-t**15-t**12+t**11+t**10+t**9-t**6-t**5-t**4)', '21111': '(t**12+2*t**10-t**9+3*t**8-t**7+2*t**6+t**4)/(1+t**19-t**18+t**17-t**16-t**15+t**14-3*t**13+3*t**12-2*t**11+2*t**10+2*t**9-2*t**8+3*t**7-3*t**6+t**5-t**4-t**3+t**2-t)', '2211': '(t**8+2*t**7+t**6+2*t**5+t**4)/(1+t**15-t**13-2*t**11-t**10+2*t**9+t**8+t**7+2*t**6-t**5-2*t**4-t**2)', '222': '(-t**25+t**24+t**21-t**20+t**19-t**17+t**16-t**15+2*t**14+2*t**12-2*t**11+3*t**10-3*t**9+4*t**8-2*t**7+2*t**6+t**4)/(1+t**23-t**22-t**19+t**18-t**17+t**16+t**13-t**12-t**11+t**10+t**7-t**6+t**5-t**4-t)', '3111': '(2*t**16-t**15+3*t**14-t**13+3*t**12+2*t**10+3*t**8-t**7+3*t**6-t**5+2*t**4)/(1+t**23-t**22-t**19+t**18-t**17+t**16+t**13-t**12-t**11+t**10+t**7-t**6+t**5-t**4-t)', '321': '(-t**17-t**16+2*t**12+4*t**11+5*t**10+4*t**9+6*t**8+4*t**7+3*t**6+t**5+t**4)/(1+t**19-t**17-t**14-2*t**13+t**12+2*t**11+2*t**8+t**7-2*t**6-t**5-t**2)', '33': '(t**15+2*t**13-t**12+2*t**11-t**10+2*t**9-t**8+2*t**7+t**5)/(1+t**23-t**22-t**19+t**18-t**17+t**16+t**13-t**12-t**11+t**10+t**7-t**6+t**5-t**4-t)', '411': '(t**24-t**23-t**20+t**17+2*t**15+t**14+t**13+2*t**11+2*t**10+t**9+2*t**8+t**7+t**6+t**5)/(1+t**23-t**22-t**19+t**18-t**17+t**16+t**13-t**12-t**11+t**10+t**7-t**6+t**5-t**4-t)', '42': '(-t**14-t**11+2*t**10+t**9+t**8+2*t**7+2*t**6+t**4)/(1+t**15-t**13-2*t**11-t**10+2*t**9+t**8+t**7+2*t**6-t**5-2*t**4-t**2)', '51': '(-t**17-t**15+t**13+3*t**11+t**10+2*t**9+t**8+t**6)/(1+t**19-t**18+t**17-t**16-t**15+t**14-3*t**13+3*t**12-2*t**11+2*t**10+2*t**9-2*t**8+3*t**7-3*t**6+t**5-t**4-t**3+t**2-t)', '6': '(t**18+t**16+t**14+t**12+t**10+t**8+t**6)/(1+t**27-t**23-t**22-t**21+t**18+t**17+t**16-t**15-t**12+t**11+t**10+t**9-t**6-t**5-t**4)', 'author': 'Fabien Clery', 'description': 'Hilbert-Poincare series for the sum of the canonical $S_6$-submodule $M_k^p$ ($k\\ge 4$) of $M_{k,6}(Gamma_0(2))$ corresponding to the irreducible $S_6$ representation defined by the partition $p$. The action of $S_6$ is given by identifying $S_6$ with the quotient $SP(4,Z)/Gamma(2)$ and letting act $SP(4,Z)$ in the natural way.', 'group': 'Gamma(2)', 'id': 5, 'note': ['if $j\\\\ge2 then only $k\\\\ge 4$'], 'space': 'total', 'sym_power': 6, 'title': 'Hilbert Poincare series'}