Query:
/api/smf_dims/?_offset=0
{'111111': '(95*t**4+48*t**5+41*t**6+151*t**7+3*t**8-37*t**9+19*t**10-73*t**11-128*t**12+24*t**13-36*t**14-41*t**15-35*t**16-47*t**17-41*t**18-144*t**19-3*t**20+38*t**21-13*t**22+74*t**23+128*t**24-18*t**25+36*t**26+42*t**27-54*t**28)/(1+t**25-t**24+t**22-2*t**21+t**19-t**18+2*t**16-t**15-t**10+2*t**9-t**7+t**6-2*t**4+t**3-t)', '21111': '(-224*t**20+420*t**19-233*t**18+181*t**17+622*t**16-680*t**15+827*t**14-624*t**13-240*t**12+50*t**11-1047*t**10+667*t**9-588*t**8+215*t**7+463*t**6-220*t**5+440*t**4)/(1+t**17-2*t**16+2*t**15-t**14-2*t**13+4*t**12-5*t**11+4*t**10-t**9-t**8+4*t**7-5*t**6+4*t**5-2*t**4-t**3+2*t**2-2*t)', '2211': '(-354*t**18+682*t**16+638*t**15+1308*t**14+902*t**13-862*t**12-1496*t**11-1764*t**10-2024*t**9-531*t**8+880*t**7+831*t**6+1144*t**5+733*t**4)/(1+t**15-t**13-2*t**11-t**10+2*t**9+t**8+t**7+2*t**6-t**5-2*t**4-t**2)', '222': '(-180*t**24+365*t**23-t**22-189*t**21+526*t**20-372*t**19-30*t**18+175*t**17-391*t**16+12*t**15-18*t**14+11*t**13+196*t**12-387*t**11+17*t**10+200*t**9-544*t**8+384*t**7+45*t**6-196*t**5+406*t**4)/(1+t**21-2*t**20+t**19+t**18-3*t**17+3*t**16-t**15-t**14+2*t**13-t**12-t**9+2*t**8-t**7-t**6+3*t**5-3*t**4+t**3+t**2-2*t)', '3111': '(-364*t**24+749*t**23-14*t**22-392*t**21+1085*t**20-784*t**19-48*t**18+362*t**17-789*t**16+6*t**15+t**14+6*t**13+373*t**12-751*t**11+23*t**10+398*t**9-1084*t**8+790*t**7+58*t**6-366*t**5+799*t**4)/(1+t**21-2*t**20+t**19+t**18-3*t**17+3*t**16-t**15-t**14+2*t**13-t**12-t**9+2*t**8-t**7-t**6+3*t**5-3*t**4+t**3+t**2-2*t)', '321': '(-528*t**20+619*t**19+1119*t**18-607*t**17+538*t**16+1577*t**15-257*t**14-1894*t**13-659*t**12-86*t**11-1732*t**10-1547*t**9+799*t**8+1288*t**7-428*t**6+706*t**5+1208*t**4)/(1+t**17-t**16-t**15+2*t**14-t**13-2*t**12+t**11+2*t**10-t**9-t**8+2*t**7+t**6-2*t**5-t**4+2*t**3-t**2-t)', '33': '(-147*t**24+343*t**23-16*t**22-155*t**21+477*t**20-378*t**19+13*t**18+106*t**17-341*t**16+15*t**15-23*t**14+16*t**13+160*t**12-363*t**11+29*t**10+171*t**9-500*t**8+393*t**7+t**6-127*t**5+355*t**4)/(1+t**21-2*t**20+t**19+t**18-3*t**17+3*t**16-t**15-t**14+2*t**13-t**12-t**9+2*t**8-t**7-t**6+3*t**5-3*t**4+t**3+t**2-2*t)', '411': '(-294*t**24+686*t**23-21*t**22-329*t**21+959*t**20-735*t**19-28*t**18+273*t**17-707*t**16+8*t**15-t**14+8*t**13+302*t**12-688*t**11+29*t**10+337*t**9-960*t**8+743*t**7+35*t**6-273*t**5+714*t**4)/(1+t**21-2*t**20+t**19+t**18-3*t**17+3*t**16-t**15-t**14+2*t**13-t**12-t**9+2*t**8-t**7-t**6+3*t**5-3*t**4+t**3+t**2-2*t)', '42': '(-244*t**18+100*t**17+682*t**16+638*t**15+1067*t**14+592*t**13-962*t**12-1497*t**11-1632*t**10-1683*t**9-331*t**8+880*t**7+832*t**6+1012*t**5+633*t**4)/(1+t**15-t**13-2*t**11-t**10+2*t**9+t**8+t**7+2*t**6-t**5-2*t**4-t**2)', '51': '(-117*t**20+316*t**19-125*t**18+169*t**17+420*t**16-484*t**15+515*t**14-527*t**13-234*t**12-50*t**11-728*t**10+471*t**9-384*t**8+225*t**7+345*t**6-105*t**5+322*t**4)/(1+t**17-2*t**16+2*t**15-t**14-2*t**13+4*t**12-5*t**11+4*t**10-t**9-t**8+4*t**7-5*t**6+4*t**5-2*t**4-t**3+2*t**2-2*t)', '6': '(62*t**4+37*t**5+52*t**6+107*t**7+36*t**8-t**9+28*t**10-49*t**11-84*t**12-7*t**13-40*t**14-40*t**15-34*t**16-39*t**17-53*t**18-98*t**19-37*t**20-t**21-17*t**22+47*t**23+83*t**24+17*t**25+39*t**26+38*t**27-17*t**28)/(1+t**25-t**24+t**22-2*t**21+t**19-t**18+2*t**16-t**15-t**10+2*t**9-t**7+t**6-2*t**4+t**3-t)', 'author': 'Fabien Clery', 'description': 'Hilbert-Poincare series for the sum of the canonical $S_6$-submodule $M_k^p$ ($k\\ge 4$) of $M_{k,86}(Gamma_0(2))$ corresponding to the irreducible $S_6$ representation defined by the partition $p$. The action of $S_6$ is given by identifying $S_6$ with the quotient $SP(4,Z)/Gamma(2)$ and letting act $SP(4,Z)$ in the natural way.', 'group': 'Gamma(2)', 'id': 47, 'note': ['if $j\\\\ge2 then only $k\\\\ge 4$'], 'space': 'total', 'sym_power': 86, 'title': 'Hilbert Poincare series'}