Formats: - HTML - YAML - JSON - 2025-12-16T03:31:29.235442
Query: /api/smf_dims/?_offset=0
Show schema

{'111111': '(-28*t**28+19*t**27+20*t**26-12*t**25+64*t**24+38*t**23-7*t**22+17*t**21-74*t**19-23*t**18-23*t**17-17*t**16-19*t**15-21*t**14+19*t**13-65*t**12-38*t**11+13*t**10-17*t**9-t**8+81*t**7+22*t**6+23*t**5+52*t**4)/(1+t**25-t**24+t**22-2*t**21+t**19-t**18+2*t**16-t**15-t**10+2*t**9-t**7+t**6-2*t**4+t**3-t)', '21111': '(-117*t**20+213*t**19-117*t**18+81*t**17+327*t**16-357*t**15+418*t**14-303*t**13-144*t**12+48*t**11-545*t**10+345*t**9-288*t**8+99*t**7+252*t**6-120*t**5+231*t**4)/(1+t**17-2*t**16+2*t**15-t**14-2*t**13+4*t**12-5*t**11+4*t**10-t**9-t**8+4*t**7-5*t**6+4*t**5-2*t**4-t**3+2*t**2-2*t)', '2211': '(-176*t**18+339*t**16+312*t**15+642*t**14+432*t**13-451*t**12-760*t**11-884*t**10-999*t**9-242*t**8+465*t**7+435*t**6+585*t**5+371*t**4)/(1+t**15-t**13-2*t**11-t**10+2*t**9+t**8+t**7+2*t**6-t**5-2*t**4-t**2)', '222': '(-90*t**24+178*t**23+5*t**22-99*t**21+259*t**20-179*t**19-26*t**18+92*t**17-199*t**16+8*t**15-13*t**14+8*t**13+103*t**12-195*t**11+7*t**10+108*t**9-273*t**8+188*t**7+38*t**6-109*t**5+212*t**4)/(1+t**21-2*t**20+t**19+t**18-3*t**17+3*t**16-t**15-t**14+2*t**13-t**12-t**9+2*t**8-t**7-t**6+3*t**5-3*t**4+t**3+t**2-2*t)', '3111': '(-180*t**24+375*t**23-15*t**22-189*t**21+528*t**20-394*t**19-24*t**18+172*t**17-393*t**16+6*t**15-2*t**14+6*t**13+189*t**12-380*t**11+24*t**10+194*t**9-528*t**8+399*t**7+33*t**6-177*t**5+402*t**4)/(1+t**21-2*t**20+t**19+t**18-3*t**17+3*t**16-t**15-t**14+2*t**13-t**12-t**9+2*t**8-t**7-t**6+3*t**5-3*t**4+t**3+t**2-2*t)', '321': '(-253*t**20+308*t**19+546*t**18-302*t**17+257*t**16+758*t**15-159*t**14-951*t**13-332*t**12-51*t**11-849*t**10-734*t**9+423*t**8+653*t**7-188*t**6+363*t**5+603*t**4)/(1+t**17-t**16-t**15+2*t**14-t**13-2*t**12+t**11+2*t**10-t**9-t**8+2*t**7+t**6-2*t**5-t**4+2*t**3-t**2-t)', '33': '(-66*t**24+162*t**23-6*t**22-75*t**21+225*t**20-186*t**19+8*t**18+41*t**17-164*t**16+13*t**15-19*t**14+13*t**13+76*t**12-178*t**11+17*t**10+87*t**9-243*t**8+198*t**7+3*t**6-57*t**5+174*t**4)/(1+t**21-2*t**20+t**19+t**18-3*t**17+3*t**16-t**15-t**14+2*t**13-t**12-t**9+2*t**8-t**7-t**6+3*t**5-3*t**4+t**3+t**2-2*t)', '411': '(-135*t**24+336*t**23-21*t**22-150*t**21+450*t**20-366*t**19-10*t**18+115*t**17-340*t**16+5*t**15+2*t**14+5*t**13+140*t**12-335*t**11+26*t**10+156*t**9-450*t**8+372*t**7+15*t**6-114*t**5+345*t**4)/(1+t**21-2*t**20+t**19+t**18-3*t**17+3*t**16-t**15-t**14+2*t**13-t**12-t**9+2*t**8-t**7-t**6+3*t**5-3*t**4+t**3+t**2-2*t)', '42': '(-112*t**18+56*t**17+339*t**16+312*t**15+498*t**14+256*t**13-507*t**12-760*t**11-803*t**10-800*t**9-130*t**8+465*t**7+435*t**6+504*t**5+316*t**4)/(1+t**15-t**13-2*t**11-t**10+2*t**9+t**8+t**7+2*t**6-t**5-2*t**4-t**2)', '51': '(-50*t**20+149*t**19-51*t**18+74*t**17+200*t**16-237*t**15+227*t**14-249*t**13-134*t**12-16*t**11-346*t**10+229*t**9-167*t**8+110*t**7+176*t**6-48*t**5+156*t**4)/(1+t**17-2*t**16+2*t**15-t**14-2*t**13+4*t**12-5*t**11+4*t**10-t**9-t**8+4*t**7-5*t**6+4*t**5-2*t**4-t**3+2*t**2-2*t)', '6': '(33*t**4+15*t**5+30*t**6+54*t**7+19*t**8+3*t**9+20*t**10-25*t**11-38*t**12-t**13-22*t**14-18*t**15-19*t**16-16*t**17-30*t**18-48*t**19-19*t**20-4*t**21-12*t**22+24*t**23+38*t**24+7*t**25+22*t**26+17*t**27-7*t**28)/(1+t**25-t**24+t**22-2*t**21+t**19-t**18+2*t**16-t**15-t**10+2*t**9-t**7+t**6-2*t**4+t**3-t)', 'author': 'Fabien Clery', 'description': 'Hilbert-Poincare series for the sum of the canonical $S_6$-submodule $M_k^p$ ($k\\ge 4$) of $M_{k,68}(Gamma_0(2))$ corresponding to the irreducible $S_6$ representation defined by the partition $p$. The action of $S_6$ is given by identifying $S_6$ with the quotient $SP(4,Z)/Gamma(2)$ and letting act $SP(4,Z)$ in the natural way.', 'group': 'Gamma(2)', 'id': 46, 'note': ['if $j\\\\ge2 then only $k\\\\ge 4$'], 'space': 'total', 'sym_power': 68, 'title': 'Hilbert Poincare series'}