Formats: - HTML - YAML - JSON - 2025-12-16T03:31:57.213395
Query: /api/smf_dims/?_offset=0
Show schema

{'111111': '(101*t**4+149*t**5+198*t**6+252*t**7+207*t**8+127*t**9-16*t**10-97*t**11-191*t**12-188*t**13-151*t**14-55*t**15-123*t**16-129*t**17-135*t**18-245*t**19-200*t**20-119*t**21+23*t**22+105*t**23+198*t**24+196*t**25+158*t**26+63*t**27+29*t**28-12*t**29-56*t**30)/(1+t**27-t**23-t**22-t**21+t**18+t**17+t**16-t**15-t**12+t**11+t**10+t**9-t**6-t**5-t**4)', '21111': '(-240*t**22+204*t**21-36*t**20+388*t**19+615*t**18+136*t**17+828*t**16-499*t**15-39*t**14-861*t**13-1334*t**12-356*t**11-1046*t**10+308*t**9+92*t**8+486*t**7+735*t**6+233*t**5+475*t**4)/(1+t**19-t**18+t**17-t**16-t**15+t**14-3*t**13+3*t**12-2*t**11+2*t**10+2*t**9-2*t**8+3*t**7-3*t**6+t**5-t**4-t**3+t**2-t)', '2211': '(-376*t**18+730*t**16+684*t**15+1397*t**14+966*t**13-919*t**12-1599*t**11-1886*t**10-2162*t**9-572*t**8+937*t**7+887*t**6+1219*t**5+783*t**4)/(1+t**15-t**13-2*t**11-t**10+2*t**9+t**8+t**7+2*t**6-t**5-2*t**4-t**2)', '222': '(-196*t**26+201*t**25+200*t**24+180*t**23+371*t**22-42*t**21+133*t**20-236*t**19-269*t**18-216*t**17-425*t**16+5*t**15+205*t**14-195*t**13-191*t**12-174*t**11-362*t**10+48*t**9-124*t**8+241*t**7+279*t**6+221*t**5+435*t**4)/(1+t**23-t**22-t**19+t**18-t**17+t**16+t**13-t**12-t**11+t**10+t**7-t**6+t**5-t**4-t)', '3111': '(-392*t**26+420*t**25+392*t**24+371*t**23+728*t**22-98*t**21+273*t**20-504*t**19-504*t**18-455*t**17-831*t**16+13*t**15+409*t**14-407*t**13-375*t**12-359*t**11-711*t**10+111*t**9-256*t**8+517*t**7+520*t**6+469*t**5+847*t**4)/(1+t**23-t**22-t**19+t**18-t**17+t**16+t**13-t**12-t**11+t**10+t**7-t**6+t**5-t**4-t)', '321': '(-567*t**22+91*t**21+1291*t**20+1218*t**19+1128*t**18+1617*t**17+2012*t**16-588*t**15-3001*t**14-2827*t**13-2646*t**12-3610*t**11-2684*t**10+555*t**9+1770*t**8+1668*t**7+1578*t**6+2052*t**5+1299*t**4)/(1+t**19-t**17-t**14-2*t**13+t**12+2*t**11+2*t**8+t**7-2*t**6-t**5-t**2)', '33': '(-156*t**26+212*t**25+196*t**24+176*t**23+335*t**22-64*t**21+114*t**20-267*t**19-246*t**18-231*t**17-370*t**16+9*t**15+162*t**14-204*t**13-189*t**12-168*t**11-328*t**10+72*t**9-108*t**8+276*t**7+252*t**6+240*t**5+376*t**4)/(1+t**23-t**22-t**19+t**18-t**17+t**16+t**13-t**12-t**11+t**10+t**7-t**6+t**5-t**4-t)', '411': '(-315*t**26+427*t**25+392*t**24+364*t**23+650*t**22-112*t**21+210*t**20-525*t**19-489*t**18-462*t**17-741*t**16+15*t**15+330*t**14-412*t**13-378*t**12-348*t**11-636*t**10+127*t**9-195*t**8+540*t**7+504*t**6+476*t**5+756*t**4)/(1+t**23-t**22-t**19+t**18-t**17+t**16+t**13-t**12-t**11+t**10+t**7-t**6+t**5-t**4-t)', '42': '(-266*t**18+100*t**17+730*t**16+684*t**15+1156*t**14+656*t**13-1019*t**12-1599*t**11-1754*t**10-1822*t**9-372*t**8+937*t**7+887*t**6+1087*t**5+684*t**4)/(1+t**15-t**13-2*t**11-t**10+2*t**9+t**8+t**7+2*t**6-t**5-2*t**4-t**2)', '51': '(-126*t**22+208*t**21+81*t**20+381*t**19+501*t**18+117*t**17+490*t**16-521*t**15-260*t**14-860*t**13-1093*t**12-331*t**11-699*t**10+328*t**9+194*t**8+494*t**7+606*t**6+229*t**5+350*t**4)/(1+t**19-t**18+t**17-t**16-t**15+t**14-3*t**13+3*t**12-2*t**11+2*t**10+2*t**9-2*t**8+3*t**7-3*t**6+t**5-t**4-t**3+t**2-t)', '6': '(68*t**4+105*t**5+165*t**6+208*t**7+208*t**8+152*t**9+62*t**10-28*t**11-113*t**12-153*t**13-143*t**14-89*t**15-126*t**16-119*t**17-138*t**18-201*t**19-200*t**20-145*t**21-54*t**22+35*t**23+121*t**24+159*t**25+151*t**26+96*t**27+66*t**28+21*t**29-19*t**30)/(1+t**27-t**23-t**22-t**21+t**18+t**17+t**16-t**15-t**12+t**11+t**10+t**9-t**6-t**5-t**4)', 'author': 'Fabien Clery', 'description': 'Hilbert-Poincare series for the sum of the canonical $S_6$-submodule $M_k^p$ ($k\\ge 4$) of $M_{k,88}(Gamma_0(2))$ corresponding to the irreducible $S_6$ representation defined by the partition $p$. The action of $S_6$ is given by identifying $S_6$ with the quotient $SP(4,Z)/Gamma(2)$ and letting act $SP(4,Z)$ in the natural way.', 'group': 'Gamma(2)', 'id': 45, 'note': ['if $j\\\\ge2 then only $k\\\\ge 4$'], 'space': 'total', 'sym_power': 88, 'title': 'Hilbert Poincare series'}