Query:
/api/smf_dims/?_offset=0
{'111111': '(-2*t**30-t**29+2*t**26+3*t**25+3*t**24+t**23+t**22-2*t**21-3*t**20-3*t**19-t**17-t**16+2*t**15-t**14-t**13-t**12+t**11+4*t**9+4*t**8+5*t**7+3*t**6+4*t**5+2*t**4)/(1+t**27-t**23-t**22-t**21+t**18+t**17+t**16-t**15-t**12+t**11+t**10+t**9-t**6-t**5-t**4)', '21111': '(-3*t**22+2*t**21-t**20+3*t**19+6*t**18-t**17+7*t**16-6*t**15-3*t**14-6*t**13-15*t**12+t**11-7*t**10+5*t**9+9*t**8+4*t**7+14*t**6+2*t**5+8*t**4)/(1+t**19-t**18+t**17-t**16-t**15+t**14-3*t**13+3*t**12-2*t**11+2*t**10+2*t**9-2*t**8+3*t**7-3*t**6+t**5-t**4-t**3+t**2-t)', '2211': '(-4*t**18+6*t**16+5*t**15+13*t**14+5*t**13-13*t**12-17*t**11-20*t**10-18*t**9+3*t**8+17*t**7+15*t**6+18*t**5+9*t**4)/(1+t**15-t**13-2*t**11-t**10+2*t**9+t**8+t**7+2*t**6-t**5-2*t**4-t**2)', '222': '(-2*t**26+3*t**24+t**23+2*t**22+2*t**21-3*t**20-5*t**18-2*t**17-4*t**16+5*t**14+t**12-2*t**11+2*t**10-3*t**9+7*t**8+8*t**6+2*t**5+7*t**4)/(1+t**23-t**22-t**19+t**18-t**17+t**16+t**13-t**12-t**11+t**10+t**7-t**6+t**5-t**4-t)', '3111': '(-3*t**26+3*t**25+4*t**24+2*t**23+4*t**22-2*t**21-3*t**20-4*t**19-8*t**18-3*t**17-6*t**16+t**15+8*t**14-2*t**13+t**12+4*t**9+8*t**8+5*t**7+13*t**6+4*t**5+12*t**4)/(1+t**23-t**22-t**19+t**18-t**17+t**16+t**13-t**12-t**11+t**10+t**7-t**6+t**5-t**4-t)', '321': '(-2*t**22+3*t**21+10*t**20+8*t**19+5*t**18+4*t**17-18*t**15-34*t**14-28*t**13-18*t**12-14*t**11+t**10+27*t**9+38*t**8+32*t**7+26*t**6+22*t**5+14*t**4)/(1+t**19-t**17-t**14-2*t**13+t**12+2*t**11+2*t**8+t**7-2*t**6-t**5-t**2)', '33': '(-t**26+2*t**25+2*t**24+2*t**22-2*t**21-5*t**19-2*t**18-3*t**17-2*t**16+2*t**15+2*t**14+t**13-2*t**12+3*t**11-2*t**10+5*t**9+8*t**7+3*t**6+5*t**5+3*t**4)/(1+t**23-t**22-t**19+t**18-t**17+t**16+t**13-t**12-t**11+t**10+t**7-t**6+t**5-t**4-t)', '411': '(-t**26+4*t**25+5*t**24+2*t**22-4*t**21-4*t**20-7*t**19-6*t**18-3*t**17-4*t**16+4*t**15+4*t**14-t**13-2*t**12+3*t**11+2*t**10+7*t**9+7*t**8+10*t**7+9*t**6+7*t**5+6*t**4)/(1+t**23-t**22-t**19+t**18-t**17+t**16+t**13-t**12-t**11+t**10+t**7-t**6+t**5-t**4-t)', '42': '(2*t**17+6*t**16+5*t**15+t**14-3*t**13-15*t**12-18*t**11-11*t**10-4*t**9+7*t**8+17*t**7+16*t**6+9*t**5+7*t**4)/(1+t**15-t**13-2*t**11-t**10+2*t**9+t**8+t**7+2*t**6-t**5-2*t**4-t**2)', '51': '(3*t**21+2*t**20+3*t**19+2*t**18-4*t**17-2*t**16-11*t**15-7*t**14-7*t**13-6*t**12+6*t**11+3*t**10+11*t**9+8*t**8+7*t**7+7*t**6+2*t**5+2*t**4)/(1+t**19-t**18+t**17-t**16-t**15+t**14-3*t**13+3*t**12-2*t**11+2*t**10+2*t**9-2*t**8+3*t**7-3*t**6+t**5-t**4-t**3+t**2-t)', '6': '(t**28+t**27+t**25-t**24-t**23-2*t**22-2*t**21-2*t**20-t**19+2*t**14+3*t**12+2*t**11+4*t**10+3*t**9+4*t**8+2*t**7+3*t**6+t**5+t**4)/(1+t**27-t**23-t**22-t**21+t**18+t**17+t**16-t**15-t**12+t**11+t**10+t**9-t**6-t**5-t**4)', 'author': 'Fabien Clery', 'description': 'Hilbert-Poincare series for the sum of the canonical $S_6$-submodule $M_k^p$ ($k\\ge 4$) of $M_{k,18}(Gamma_0(2))$ corresponding to the irreducible $S_6$ representation defined by the partition $p$. The action of $S_6$ is given by identifying $S_6$ with the quotient $SP(4,Z)/Gamma(2)$ and letting act $SP(4,Z)$ in the natural way.', 'group': 'Gamma(2)', 'id': 44, 'note': ['if $j\\\\ge2 then only $k\\\\ge 4$'], 'space': 'total', 'sym_power': 18, 'title': 'Hilbert Poincare series'}