Formats: - HTML - YAML - JSON - 2025-12-16T03:30:49.195758
Query: /api/smf_dims/?_offset=0
Show schema

{'111111': '(-18*t**26+12*t**25+10*t**24+8*t**23+25*t**22-6*t**21+13*t**20-16*t**19-9*t**18-14*t**17-27*t**16+2*t**15+18*t**14-11*t**13-9*t**12-7*t**11-24*t**10+7*t**9-12*t**8+17*t**7+9*t**6+16*t**5+27*t**4)/(1+t**23-t**22-t**19+t**18-t**17+t**16+t**13-t**12-t**11+t**10+t**7-t**6+t**5-t**4-t)', '21111': '(-60*t**22+50*t**21-14*t**20+92*t**19+142*t**18+22*t**17+192*t**16-132*t**15-16*t**14-208*t**13-323*t**12-72*t**11-242*t**10+89*t**9+41*t**8+123*t**7+192*t**6+58*t**5+121*t**4)/(1+t**19-t**18+t**17-t**16-t**15+t**14-3*t**13+3*t**12-2*t**11+2*t**10+2*t**9-2*t**8+3*t**7-3*t**6+t**5-t**4-t**3+t**2-t)', '2211': '(-91*t**14+91*t**13+171*t**12-17*t**11+169*t**10-204*t**9-360*t**8+20*t**7-76*t**6+116*t**5+192*t**4)/(1+t**11-t**10-t**9+t**8-2*t**7+2*t**6+2*t**5-2*t**4+t**3-t**2-t)', '222': '(-46*t**26+43*t**25+49*t**24+40*t**23+80*t**22-7*t**21+17*t**20-55*t**19-72*t**18-53*t**17-103*t**16+3*t**15+52*t**14-40*t**13-42*t**12-38*t**11-73*t**10+9*t**9-10*t**8+58*t**7+78*t**6+56*t**5+109*t**4)/(1+t**23-t**22-t**19+t**18-t**17+t**16+t**13-t**12-t**11+t**10+t**7-t**6+t**5-t**4-t)', '3111': '(-90*t**26+96*t**25+94*t**24+80*t**23+160*t**22-32*t**21+42*t**20-124*t**19-134*t**18-108*t**17-198*t**16+7*t**15+101*t**14-89*t**13-83*t**12-72*t**11-150*t**10+40*t**9-31*t**8+131*t**7+145*t**6+115*t**5+210*t**4)/(1+t**23-t**22-t**19+t**18-t**17+t**16+t**13-t**12-t**11+t**10+t**7-t**6+t**5-t**4-t)', '321': '(-119*t**18+155*t**17+263*t**16-27*t**15-29*t**14-31*t**13+206*t**12-335*t**11-561*t**10+33*t**9+37*t**8+38*t**7-79*t**6+187*t**5+306*t**4)/(1+t**15-t**14-t**13+t**12-2*t**9+2*t**8+2*t**7-2*t**6+t**3-t**2-t)', '33': '(-34*t**26+50*t**25+46*t**24+38*t**23+70*t**22-20*t**21+18*t**20-74*t**19-58*t**18-62*t**17-82*t**16+5*t**15+38*t**14-44*t**13-43*t**12-32*t**11-67*t**10+26*t**9-15*t**8+80*t**7+62*t**6+67*t**5+86*t**4)/(1+t**23-t**22-t**19+t**18-t**17+t**16+t**13-t**12-t**11+t**10+t**7-t**6+t**5-t**4-t)', '411': '(-64*t**26+100*t**25+95*t**24+75*t**23+134*t**22-40*t**21+23*t**20-136*t**19-126*t**18-111*t**17-166*t**16+10*t**15+73*t**14-91*t**13-86*t**12-66*t**11-124*t**10+49*t**9-14*t**8+145*t**7+135*t**6+121*t**5+174*t**4)/(1+t**23-t**22-t**19+t**18-t**17+t**16+t**13-t**12-t**11+t**10+t**7-t**6+t**5-t**4-t)', '42': '(-49*t**14+85*t**13+135*t**12-17*t**11+72*t**10-179*t**9-288*t**8+19*t**7-19*t**6+96*t**5+156*t**4)/(1+t**11-t**10-t**9+t**8-2*t**7+2*t**6+2*t**5-2*t**4+t**3-t**2-t)', '51': '(-20*t**22+52*t**21+28*t**20+88*t**19+102*t**18+11*t**17+74*t**16-145*t**15-92*t**14-207*t**13-236*t**12-57*t**11-119*t**10+102*t**9+73*t**8+128*t**7+143*t**6+56*t**5+74*t**4)/(1+t**19-t**18+t**17-t**16-t**15+t**14-3*t**13+3*t**12-2*t**11+2*t**10+2*t**9-2*t**8+3*t**7-3*t**6+t**5-t**4-t**3+t**2-t)', '6': '(-3*t**26+9*t**25+12*t**24+6*t**23+8*t**22-t**21-6*t**20-9*t**19-15*t**18-9*t**17-13*t**16+5*t**14-9*t**13-11*t**12-5*t**11-7*t**10+2*t**9+7*t**8+9*t**7+17*t**6+9*t**5+15*t**4)/(1+t**23-t**22-t**19+t**18-t**17+t**16+t**13-t**12-t**11+t**10+t**7-t**6+t**5-t**4-t)', 'author': 'Fabien Clery', 'description': 'Hilbert-Poincare series for the sum of the canonical $S_6$-submodule $M_k^p$ ($k\\ge 4$) of $M_{k,54}(Gamma_0(2))$ corresponding to the irreducible $S_6$ representation defined by the partition $p$. The action of $S_6$ is given by identifying $S_6$ with the quotient $SP(4,Z)/Gamma(2)$ and letting act $SP(4,Z)$ in the natural way.', 'group': 'Gamma(2)', 'id': 43, 'note': ['if $j\\\\ge2 then only $k\\\\ge 4$'], 'space': 'total', 'sym_power': 54, 'title': 'Hilbert Poincare series'}