Query:
/api/smf_dims/?_offset=0
{'111111': '(t**11-4*t**12-3*t**13-4*t**14+2*t**15-4*t**16-3*t**17-4*t**18-10*t**19-8*t**20-7*t**21+2*t**23+6*t**24+6*t**25+6*t**26+t**27+t**28-t**29-3*t**30+5*t**4+7*t**5+9*t**6+12*t**7+10*t**8+10*t**9+2*t**10)/(1+t**27-t**23-t**22-t**21+t**18+t**17+t**16-t**15-t**12+t**11+t**10+t**9-t**6-t**5-t**4)', '21111': '(-11*t**22+5*t**21-2*t**20+10*t**19+24*t**18+2*t**17+29*t**16-16*t**15-7*t**14-25*t**13-57*t**12-8*t**11-35*t**10+14*t**9+16*t**8+18*t**7+39*t**6+9*t**5+24*t**4)/(1+t**19-t**18+t**17-t**16-t**15+t**14-3*t**13+3*t**12-2*t**11+2*t**10+2*t**9-2*t**8+3*t**7-3*t**6+t**5-t**4-t**3+t**2-t)', '2211': '(-13*t**18+24*t**16+20*t**15+44*t**14+24*t**13-42*t**12-61*t**11-67*t**10-68*t**9-5*t**8+48*t**7+43*t**6+52*t**5+30*t**4)/(1+t**15-t**13-2*t**11-t**10+2*t**9+t**8+t**7+2*t**6-t**5-2*t**4-t**2)', '222': '(-6*t**26+5*t**25+7*t**24+4*t**23+11*t**22-2*t**21-2*t**20-5*t**19-16*t**18-5*t**17-15*t**16+10*t**14-4*t**13-3*t**12-3*t**11-7*t**10+3*t**9+6*t**8+5*t**7+21*t**6+5*t**5+20*t**4)/(1+t**23-t**22-t**19+t**18-t**17+t**16+t**13-t**12-t**11+t**10+t**7-t**6+t**5-t**4-t)', '3111': '(-12*t**26+15*t**25+12*t**24+11*t**23+18*t**22-8*t**21-2*t**20-19*t**19-24*t**18-15*t**17-26*t**16+3*t**15+19*t**14-12*t**13-5*t**12-9*t**11-11*t**10+11*t**9+9*t**8+22*t**7+30*t**6+19*t**5+32*t**4)/(1+t**23-t**22-t**19+t**18-t**17+t**16+t**13-t**12-t**11+t**10+t**7-t**6+t**5-t**4-t)', '321': '(-14*t**22+6*t**21+41*t**20+36*t**19+26*t**18+34*t**17+35*t**16-48*t**15-121*t**14-103*t**13-82*t**12-94*t**11-49*t**10+60*t**9+100*t**8+86*t**7+76*t**6+79*t**5+48*t**4)/(1+t**19-t**17-t**14-2*t**13+t**12+2*t**11+2*t**8+t**7-2*t**6-t**5-t**2)', '33': '(-2*t**26+8*t**25+6*t**24+2*t**23+9*t**22-9*t**21-13*t**19-11*t**18-7*t**17-9*t**16+4*t**15+3*t**14-5*t**13-4*t**12+t**11-7*t**10+12*t**9+t**8+17*t**7+12*t**6+11*t**5+10*t**4)/(1+t**23-t**22-t**19+t**18-t**17+t**16+t**13-t**12-t**11+t**10+t**7-t**6+t**5-t**4-t)', '411': '(-5*t**26+17*t**25+12*t**24+9*t**23+10*t**22-12*t**21-5*t**20-25*t**19-19*t**18-17*t**17-16*t**16+5*t**15+10*t**14-12*t**13-8*t**12-3*t**11-6*t**10+17*t**9+10*t**8+30*t**7+24*t**6+21*t**5+21*t**4)/(1+t**23-t**22-t**19+t**18-t**17+t**16+t**13-t**12-t**11+t**10+t**7-t**6+t**5-t**4-t)', '42': '(-4*t**18+6*t**17+24*t**16+20*t**15+20*t**14+3*t**13-48*t**12-61*t**11-51*t**10-39*t**9+7*t**8+48*t**7+43*t**6+36*t**5+25*t**4)/(1+t**15-t**13-2*t**11-t**10+2*t**9+t**8+t**7+2*t**6-t**5-2*t**4-t**2)', '51': '(-t**22+7*t**21+8*t**20+9*t**19+13*t**18-4*t**17-24*t**15-24*t**14-26*t**13-32*t**12+t**11-4*t**10+22*t**9+21*t**8+22*t**7+23*t**6+8*t**5+10*t**4)/(1+t**19-t**18+t**17-t**16-t**15+t**14-3*t**13+3*t**12-2*t**11+2*t**10+2*t**9-2*t**8+3*t**7-3*t**6+t**5-t**4-t**3+t**2-t)', '6': '(5*t**11+4*t**12-2*t**13-t**14-t**15-4*t**16-t**17-4*t**18-5*t**19-8*t**20-7*t**21-7*t**22-3*t**23-t**24+3*t**25+4*t**26+3*t**27+4*t**28+t**29+3*t**4+2*t**5+7*t**6+7*t**7+11*t**8+9*t**9+10*t**10)/(1+t**27-t**23-t**22-t**21+t**18+t**17+t**16-t**15-t**12+t**11+t**10+t**9-t**6-t**5-t**4)', 'author': 'Fabien Clery', 'description': 'Hilbert-Poincare series for the sum of the canonical $S_6$-submodule $M_k^p$ ($k\\ge 4$) of $M_{k,28}(Gamma_0(2))$ corresponding to the irreducible $S_6$ representation defined by the partition $p$. The action of $S_6$ is given by identifying $S_6$ with the quotient $SP(4,Z)/Gamma(2)$ and letting act $SP(4,Z)$ in the natural way.', 'group': 'Gamma(2)', 'id': 42, 'note': ['if $j\\\\ge2 then only $k\\\\ge 4$'], 'space': 'total', 'sym_power': 28, 'title': 'Hilbert Poincare series'}