Query:
/api/smf_dims/?_offset=0
{'111111': '(-36*t**24+63*t**23-4*t**22-36*t**21+96*t**20-72*t**19+7*t**18+29*t**17-62*t**16+3*t**15-3*t**14+2*t**13+38*t**12-66*t**11+6*t**10+38*t**9-99*t**8+75*t**7-6*t**6-31*t**5+63*t**4)/(1+t**21-2*t**20+t**19+t**18-3*t**17+3*t**16-t**15-t**14+2*t**13-t**12-t**9+2*t**8-t**7-t**6+3*t**5-3*t**4+t**3+t**2-2*t)', '21111': '(-147*t**20+273*t**19-153*t**18+114*t**17+405*t**16-447*t**15+535*t**14-401*t**13-163*t**12+41*t**11-681*t**10+436*t**9-375*t**8+137*t**7+308*t**6-146*t**5+289*t**4)/(1+t**17-2*t**16+2*t**15-t**14-2*t**13+4*t**12-5*t**11+4*t**10-t**9-t**8+4*t**7-5*t**6+4*t**5-2*t**4-t**3+2*t**2-2*t)', '2211': '(-228*t**14+228*t**13+436*t**12-32*t**11+429*t**10-496*t**9-906*t**8+36*t**7-198*t**6+272*t**5+474*t**4)/(1+t**11-t**10-t**9+t**8-2*t**7+2*t**6+2*t**5-2*t**4+t**3-t**2-t)', '222': '(-114*t**24+231*t**23-120*t**21+330*t**20-234*t**19-24*t**18+111*t**17-251*t**16+10*t**15-15*t**14+9*t**13+128*t**12-250*t**11+14*t**10+129*t**9-345*t**8+244*t**7+37*t**6-129*t**5+264*t**4)/(1+t**21-2*t**20+t**19+t**18-3*t**17+3*t**16-t**15-t**14+2*t**13-t**12-t**9+2*t**8-t**7-t**6+3*t**5-3*t**4+t**3+t**2-2*t)', '3111': '(-231*t**24+477*t**23-9*t**22-252*t**21+687*t**20-501*t**19-38*t**18+232*t**17-508*t**16+5*t**15+t**14+5*t**13+239*t**12-479*t**11+17*t**10+257*t**9-686*t**8+506*t**7+47*t**6-236*t**5+517*t**4)/(1+t**21-2*t**20+t**19+t**18-3*t**17+3*t**16-t**15-t**14+2*t**13-t**12-t**9+2*t**8-t**7-t**6+3*t**5-3*t**4+t**3+t**2-2*t)', '321': '(-330*t**16+726*t**15+311*t**14-1095*t**13+724*t**12+321*t**11-450*t**10-718*t**9-302*t**8+1087*t**7-715*t**6-313*t**5+774*t**4)/(1+t**13-2*t**12+3*t**10-3*t**9+t**7+t**6-3*t**4+3*t**3-2*t)', '33': '(-90*t**24+216*t**23-12*t**22-96*t**21+297*t**20-243*t**19+12*t**18+57*t**17-213*t**16+13*t**15-20*t**14+14*t**13+101*t**12-233*t**11+23*t**10+110*t**9-317*t**8+256*t**7-75*t**5+225*t**4)/(1+t**21-2*t**20+t**19+t**18-3*t**17+3*t**16-t**15-t**14+2*t**13-t**12-t**9+2*t**8-t**7-t**6+3*t**5-3*t**4+t**3+t**2-2*t)', '411': '(-180*t**24+432*t**23-15*t**22-207*t**21+597*t**20-468*t**19-21*t**18+165*t**17-447*t**16+7*t**15-t**14+7*t**13+187*t**12-434*t**11+22*t**10+214*t**9-598*t**8+475*t**7+27*t**6-165*t**5+453*t**4)/(1+t**21-2*t**20+t**19+t**18-3*t**17+3*t**16-t**15-t**14+2*t**13-t**12-t**9+2*t**8-t**7-t**6+3*t**5-3*t**4+t**3+t**2-2*t)', '42': '(-147*t**14+219*t**13+364*t**12-32*t**11+249*t**10-460*t**9-762*t**8+35*t**7-97*t**6+244*t**5+402*t**4)/(1+t**11-t**10-t**9+t**8-2*t**7+2*t**6+2*t**5-2*t**4+t**3-t**2-t)', '51': '(-69*t**20+198*t**19-75*t**18+105*t**17+258*t**16-306*t**15+309*t**14-333*t**13-156*t**12-33*t**11-447*t**10+295*t**9-228*t**8+147*t**7+219*t**6-60*t**5+201*t**4)/(1+t**17-2*t**16+2*t**15-t**14-2*t**13+4*t**12-5*t**11+4*t**10-t**9-t**8+4*t**7-5*t**6+4*t**5-2*t**4-t**3+2*t**2-2*t)', '6': '(-9*t**24+33*t**23+t**22-12*t**21+36*t**20-30*t**19-7*t**18+8*t**17-34*t**16+3*t**15-6*t**14+4*t**13+13*t**12-40*t**11+3*t**10+16*t**9-42*t**8+33*t**7+12*t**6-16*t**5+39*t**4)/(1+t**21-2*t**20+t**19+t**18-3*t**17+3*t**16-t**15-t**14+2*t**13-t**12-t**9+2*t**8-t**7-t**6+3*t**5-3*t**4+t**3+t**2-2*t)', 'author': 'Fabien Clery', 'description': 'Hilbert-Poincare series for the sum of the canonical $S_6$-submodule $M_k^p$ ($k\\ge 4$) of $M_{k,74}(Gamma_0(2))$ corresponding to the irreducible $S_6$ representation defined by the partition $p$. The action of $S_6$ is given by identifying $S_6$ with the quotient $SP(4,Z)/Gamma(2)$ and letting act $SP(4,Z)$ in the natural way.', 'group': 'Gamma(2)', 'id': 39, 'note': ['if $j\\\\ge2 then only $k\\\\ge 4$'], 'space': 'total', 'sym_power': 74, 'title': 'Hilbert Poincare series'}