Formats: - HTML - YAML - JSON - 2025-12-16T03:31:36.928130
Query: /api/smf_dims/?_offset=0
Show schema

{'111111': '(-20*t**16-21*t**17-22*t**18-46*t**19-39*t**20-23*t**21+6*t**22+17*t**23+36*t**24+35*t**25+26*t**26+7*t**27+3*t**28-6*t**29-13*t**30+21*t**4+32*t**5+39*t**6+50*t**7+42*t**8+27*t**9-3*t**10-13*t**11-32*t**12-30*t**13-22*t**14-2*t**15)/(1+t**27-t**23-t**22-t**21+t**18+t**17+t**16-t**15-t**12+t**11+t**10+t**9-t**6-t**5-t**4)', '21111': '(-44*t**22+34*t**21-10*t**20+62*t**19+104*t**18+12*t**17+139*t**16-93*t**15-15*t**14-141*t**13-239*t**12-45*t**11-175*t**10+65*t**9+35*t**8+85*t**7+145*t**6+40*t**5+90*t**4)/(1+t**19-t**18+t**17-t**16-t**15+t**14-3*t**13+3*t**12-2*t**11+2*t**10+2*t**9-2*t**8+3*t**7-3*t**6+t**5-t**4-t**3+t**2-t)', '2211': '(-63*t**18+120*t**16+107*t**15+224*t**14+143*t**13-175*t**12-280*t**11-319*t**10-351*t**9-70*t**8+185*t**7+170*t**6+221*t**5+137*t**4)/(1+t**15-t**13-2*t**11-t**10+2*t**9+t**8+t**7+2*t**6-t**5-2*t**4-t**2)', '222': '(-34*t**26+28*t**25+37*t**24+26*t**23+58*t**22-4*t**21+10*t**20-37*t**19-55*t**18-36*t**17-76*t**16+2*t**15+40*t**14-25*t**13-31*t**12-24*t**11-52*t**10+6*t**9-4*t**8+39*t**7+61*t**6+38*t**5+82*t**4)/(1+t**23-t**22-t**19+t**18-t**17+t**16+t**13-t**12-t**11+t**10+t**7-t**6+t**5-t**4-t)', '3111': '(-64*t**26+70*t**25+64*t**24+58*t**23+108*t**22-24*t**21+25*t**20-91*t**19-95*t**18-79*t**17-138*t**16+6*t**15+74*t**14-64*t**13-54*t**12-52*t**11-98*t**10+31*t**9-15*t**8+97*t**7+105*t**6+86*t**5+148*t**4)/(1+t**23-t**22-t**19+t**18-t**17+t**16+t**13-t**12-t**11+t**10+t**7-t**6+t**5-t**4-t)', '321': '(-81*t**22+28*t**21+210*t**20+189*t**19+166*t**18+223*t**17+251*t**16-168*t**15-539*t**14-490*t**13-435*t**12-542*t**11-354*t**10+172*t**9+363*t**8+333*t**7+302*t**6+351*t**5+217*t**4)/(1+t**19-t**17-t**14-2*t**13+t**12+2*t**11+2*t**8+t**7-2*t**6-t**5-t**2)', '33': '(-22*t**26+34*t**25+34*t**24+24*t**23+48*t**22-16*t**21+10*t**20-53*t**19-43*t**18-43*t**17-57*t**16+5*t**15+25*t**14-29*t**13-31*t**12-19*t**11-45*t**10+21*t**9-7*t**8+59*t**7+46*t**6+48*t**5+60*t**4)/(1+t**23-t**22-t**19+t**18-t**17+t**16+t**13-t**12-t**11+t**10+t**7-t**6+t**5-t**4-t)', '411': '(-42*t**26+74*t**25+64*t**24+54*t**23+86*t**22-32*t**21+10*t**20-102*t**19-88*t**18-82*t**17-110*t**16+9*t**15+50*t**14-66*t**13-56*t**12-45*t**11-78*t**10+40*t**9-2*t**8+110*t**7+96*t**6+90*t**5+118*t**4)/(1+t**23-t**22-t**19+t**18-t**17+t**16+t**13-t**12-t**11+t**10+t**7-t**6+t**5-t**4-t)', '42': '(-33*t**18+25*t**17+120*t**16+107*t**15+153*t**14+63*t**13-200*t**12-280*t**11-277*t**10-256*t**9-20*t**8+185*t**7+170*t**6+179*t**5+113*t**4)/(1+t**15-t**13-2*t**11-t**10+2*t**9+t**8+t**7+2*t**6-t**5-2*t**4-t**2)', '51': '(-12*t**22+36*t**21+24*t**20+58*t**19+72*t**18+2*t**17+44*t**16-104*t**15-76*t**14-140*t**13-168*t**12-31*t**11-76*t**10+76*t**9+60*t**8+90*t**7+104*t**6+38*t**5+52*t**4)/(1+t**19-t**18+t**17-t**16-t**15+t**14-3*t**13+3*t**12-2*t**11+2*t**10+2*t**9-2*t**8+3*t**7-3*t**6+t**5-t**4-t**3+t**2-t)', '6': '(-22*t**16-17*t**17-24*t**18-32*t**19-37*t**20-27*t**21-16*t**22-t**23+13*t**24+23*t**25+22*t**26+15*t**27+13*t**28+3*t**29-2*t**30+13*t**4+17*t**5+31*t**6+36*t**7+42*t**8+31*t**9+21*t**10+5*t**11-8*t**12-20*t**13-18*t**14-12*t**15)/(1+t**27-t**23-t**22-t**21+t**18+t**17+t**16-t**15-t**12+t**11+t**10+t**9-t**6-t**5-t**4)', 'author': 'Fabien Clery', 'description': 'Hilbert-Poincare series for the sum of the canonical $S_6$-submodule $M_k^p$ ($k\\ge 4$) of $M_{k,48}(Gamma_0(2))$ corresponding to the irreducible $S_6$ representation defined by the partition $p$. The action of $S_6$ is given by identifying $S_6$ with the quotient $SP(4,Z)/Gamma(2)$ and letting act $SP(4,Z)$ in the natural way.', 'group': 'Gamma(2)', 'id': 37, 'note': ['if $j\\\\ge2 then only $k\\\\ge 4$'], 'space': 'total', 'sym_power': 48, 'title': 'Hilbert Poincare series'}