Formats: - HTML - YAML - JSON - 2025-12-16T03:31:57.456417
Query: /api/smf_dims/?_offset=0
Show schema

{'111111': '(-4*t**28+2*t**27+2*t**26-2*t**25+8*t**24+3*t**23+t**21-9*t**19-3*t**18-3*t**17-2*t**15-3*t**14+6*t**13-9*t**12-3*t**11+3*t**10-t**9-t**8+13*t**7+2*t**6+3*t**5+8*t**4)/(1+t**25-t**24+t**22-2*t**21+t**19-t**18+2*t**16-t**15-t**10+2*t**9-t**7+t**6-2*t**4+t**3-t)', '21111': '(-16*t**20+26*t**19-14*t**18+5*t**17+44*t**16-48*t**15+48*t**14-28*t**13-29*t**12+17*t**11-69*t**10+42*t**9-25*t**8+5*t**7+40*t**6-19*t**5+32*t**4)/(1+t**17-2*t**16+2*t**15-t**14-2*t**13+4*t**12-5*t**11+4*t**10-t**9-t**8+4*t**7-5*t**6+4*t**5-2*t**4-t**3+2*t**2-2*t)', '2211': '(-19*t**18+36*t**16+30*t**15+65*t**14+38*t**13-60*t**12-88*t**11-97*t**10-103*t**9-12*t**8+66*t**7+59*t**6+74*t**5+44*t**4)/(1+t**15-t**13-2*t**11-t**10+2*t**9+t**8+t**7+2*t**6-t**5-2*t**4-t**2)', '222': '(-9*t**24+15*t**23+5*t**22-12*t**21+22*t**20-11*t**19-11*t**18+12*t**17-22*t**16+2*t**15-4*t**14+2*t**13+16*t**12-23*t**11+t**10+15*t**9-27*t**8+14*t**7+17*t**6-20*t**5+29*t**4)/(1+t**21-2*t**20+t**19+t**18-3*t**17+3*t**16-t**15-t**14+2*t**13-t**12-t**9+2*t**8-t**7-t**6+3*t**5-3*t**4+t**3+t**2-2*t)', '3111': '(-18*t**24+39*t**23-3*t**22-18*t**21+48*t**20-40*t**19-6*t**18+16*t**17-42*t**16+3*t**15-2*t**14+3*t**13+24*t**12-44*t**11+9*t**10+20*t**9-48*t**8+42*t**7+12*t**6-21*t**5+48*t**4)/(1+t**21-2*t**20+t**19+t**18-3*t**17+3*t**16-t**15-t**14+2*t**13-t**12-t**9+2*t**8-t**7-t**6+3*t**5-3*t**4+t**3+t**2-2*t)', '321': '(-22*t**20+32*t**19+53*t**18-32*t**17+21*t**16+68*t**15-33*t**14-105*t**13-36*t**12-9*t**11-83*t**10-56*t**9+60*t**8+77*t**7-3*t**6+45*t**5+67*t**4)/(1+t**17-t**16-t**15+2*t**14-t**13-2*t**12+t**11+2*t**10-t**9-t**8+2*t**7+t**6-2*t**5-t**4+2*t**3-t**2-t)', '33': '(-4*t**24+14*t**23-t**22-6*t**21+18*t**20-21*t**19+6*t**18-6*t**17-13*t**16+7*t**15-10*t**14+7*t**13+8*t**12-21*t**11+6*t**10+12*t**9-27*t**8+27*t**7-t**6-t**5+17*t**4)/(1+t**21-2*t**20+t**19+t**18-3*t**17+3*t**16-t**15-t**14+2*t**13-t**12-t**9+2*t**8-t**7-t**6+3*t**5-3*t**4+t**3+t**2-2*t)', '411': '(-9*t**24+33*t**23-6*t**22-12*t**21+36*t**20-39*t**19-t**18+4*t**17-31*t**16+2*t**15+2*t**14+2*t**13+11*t**12-32*t**11+8*t**10+15*t**9-36*t**8+42*t**7+3*t**6-3*t**5+33*t**4)/(1+t**21-2*t**20+t**19+t**18-3*t**17+3*t**16-t**15-t**14+2*t**13-t**12-t**9+2*t**8-t**7-t**6+3*t**5-3*t**4+t**3+t**2-2*t)', '42': '(-7*t**18+9*t**17+36*t**16+30*t**15+34*t**14+8*t**13-69*t**12-88*t**11-77*t**10-64*t**9+6*t**8+66*t**7+59*t**6+54*t**5+36*t**4)/(1+t**15-t**13-2*t**11-t**10+2*t**9+t**8+t**7+2*t**6-t**5-2*t**4-t**2)', '51': '(-2*t**20+13*t**19+t**17+20*t**16-27*t**15+11*t**14-19*t**13-26*t**12+7*t**11-31*t**10+25*t**9-5*t**8+10*t**7+23*t**6-4*t**5+15*t**4)/(1+t**17-2*t**16+2*t**15-t**14-2*t**13+4*t**12-5*t**11+4*t**10-t**9-t**8+4*t**7-5*t**6+4*t**5-2*t**4-t**3+2*t**2-2*t)', '6': '(t**27+3*t**26+t**25+2*t**24+2*t**23-2*t**22-3*t**21-3*t**20-3*t**19-6*t**18-t**16-2*t**15-3*t**14+2*t**13-2*t**12-3*t**11+7*t**10+2*t**9+3*t**8+6*t**7+6*t**6-t**5+5*t**4)/(1+t**25-t**24+t**22-2*t**21+t**19-t**18+2*t**16-t**15-t**10+2*t**9-t**7+t**6-2*t**4+t**3-t)', 'author': 'Fabien Clery', 'description': 'Hilbert-Poincare series for the sum of the canonical $S_6$-submodule $M_k^p$ ($k\\ge 4$) of $M_{k,32}(Gamma_0(2))$ corresponding to the irreducible $S_6$ representation defined by the partition $p$. The action of $S_6$ is given by identifying $S_6$ with the quotient $SP(4,Z)/Gamma(2)$ and letting act $SP(4,Z)$ in the natural way.', 'group': 'Gamma(2)', 'id': 33, 'note': ['if $j\\\\ge2 then only $k\\\\ge 4$'], 'space': 'total', 'sym_power': 32, 'title': 'Hilbert Poincare series'}