Query:
/api/smf_dims/?_offset=0
{'111111': '(-t**30-t**29+t**26+2*t**25+2*t**24+t**22-t**21-2*t**20-t**19+t**17+2*t**15-t**12+t**11-t**10+2*t**9+2*t**8+2*t**7+2*t**6+2*t**5+t**4)/(1+t**27-t**23-t**22-t**21+t**18+t**17+t**16-t**15-t**12+t**11+t**10+t**9-t**6-t**5-t**4)', '21111': '(-t**22+t**21-t**20+2*t**19+t**18+2*t**16-4*t**15+t**14-4*t**13-2*t**12+3*t**9+4*t**8+2*t**7+5*t**6+t**5+3*t**4)/(1+t**19-t**18+t**17-t**16-t**15+t**14-3*t**13+3*t**12-2*t**11+2*t**10+2*t**9-2*t**8+3*t**7-3*t**6+t**5-t**4-t**3+t**2-t)', '2211': '(-t**18+2*t**16+t**15+3*t**14+t**13-5*t**12-5*t**11-5*t**10-4*t**9+3*t**8+7*t**7+6*t**6+7*t**5+3*t**4)/(1+t**15-t**13-2*t**11-t**10+2*t**9+t**8+t**7+2*t**6-t**5-2*t**4-t**2)', '222': '(-t**26+t**25+t**23+t**21-t**20-t**19-3*t**17+t**16-t**15+4*t**14-t**13+3*t**12-2*t**11+3*t**10-2*t**9+4*t**8+3*t**6+2*t**5+2*t**4)/(1+t**23-t**22-t**19+t**18-t**17+t**16+t**13-t**12-t**11+t**10+t**7-t**6+t**5-t**4-t)', '3111': '(-t**26+2*t**25+2*t**23-t**22-2*t**20-3*t**19-2*t**17+t**16+5*t**14-2*t**13+4*t**12-2*t**11+5*t**10+t**9+6*t**8+3*t**7+4*t**6+3*t**5+3*t**4)/(1+t**23-t**22-t**19+t**18-t**17+t**16+t**13-t**12-t**11+t**10+t**7-t**6+t**5-t**4-t)', '321': '(3*t**21+2*t**20+t**19+t**18-t**17-5*t**16-10*t**15-8*t**14-7*t**13-3*t**12+2*t**11+11*t**10+15*t**9+16*t**8+14*t**7+11*t**6+7*t**5+3*t**4)/(1+t**19-t**17-t**14-2*t**13+t**12+2*t**11+2*t**8+t**7-2*t**6-t**5-t**2)', '33': '(t**24-t**23+t**22-t**21-t**19-t**18-t**16+2*t**15+2*t**13-t**12+3*t**11-t**10+3*t**9+4*t**7+t**6+2*t**5+t**4)/(1+t**23-t**22-t**19+t**18-t**17+t**16+t**13-t**12-t**11+t**10+t**7-t**6+t**5-t**4-t)', '411': '(2*t**25+t**24-t**22-2*t**21-2*t**20-3*t**19-t**18-t**17+t**16+3*t**15+2*t**14+t**12+3*t**11+3*t**10+4*t**9+4*t**8+5*t**7+3*t**6+3*t**5+t**4)/(1+t**23-t**22-t**19+t**18-t**17+t**16+t**13-t**12-t**11+t**10+t**7-t**6+t**5-t**4-t)', '42': '(2*t**17+2*t**16+t**15-t**14-5*t**13-7*t**12-5*t**11-t**10+2*t**9+8*t**8+7*t**7+6*t**6+3*t**5+t**4)/(1+t**15-t**13-2*t**11-t**10+2*t**9+t**8+t**7+2*t**6-t**5-2*t**4-t**2)', '51': '(t**21+t**20+t**19-2*t**17-2*t**16-5*t**15-2*t**14-3*t**13+t**12+4*t**11+4*t**10+6*t**9+3*t**8+4*t**7+t**6+t**5)/(1+t**19-t**18+t**17-t**16-t**15+t**14-3*t**13+3*t**12-2*t**11+2*t**10+2*t**9-2*t**8+3*t**7-3*t**6+t**5-t**4-t**3+t**2-t)', '6': '(t**27-t**23-t**22-t**21+t**18+t**16-t**15+t**14+2*t**12+2*t**11+3*t**10+2*t**9+2*t**8+t**7+t**6)/(1+t**27-t**23-t**22-t**21+t**18+t**17+t**16-t**15-t**12+t**11+t**10+t**9-t**6-t**5-t**4)', 'author': 'Fabien Clery', 'description': 'Hilbert-Poincare series for the sum of the canonical $S_6$-submodule $M_k^p$ ($k\\ge 4$) of $M_{k,12}cusp(Gamma_0(2))$ corresponding to the irreducible $S_6$ representation defined by the partition $p$. The action of $S_6$ is given by identifying $S_6$ with the quotient $SP(4,Z)/Gamma(2)$ and letting act $SP(4,Z)$ in the natural way.', 'group': 'Gamma(2)', 'id': 31, 'note': ['if $j\\\\ge2 then only $k\\\\ge 4$'], 'space': 'cusp', 'sym_power': 12, 'title': 'Hilbert Poincare series'}