Query:
/api/smf_dims/?_offset=0
{'111111': '(-63*t**28+47*t**27+47*t**26-21*t**25+152*t**24+93*t**23-13*t**22+43*t**21-t**20-171*t**19-55*t**18-54*t**17-45*t**16-47*t**15-48*t**14+30*t**13-153*t**12-93*t**11+21*t**10-43*t**9+180*t**7+54*t**6+54*t**5+117*t**4)/(1+t**25-t**24+t**22-2*t**21+t**19-t**18+2*t**16-t**15-t**10+2*t**9-t**7+t**6-2*t**4+t**3-t)', '21111': '(-272*t**20+508*t**19-276*t**18+212*t**17+768*t**16-828*t**15+1005*t**14-747*t**13-305*t**12+73*t**11-1287*t**10+812*t**9-716*t**8+252*t**7+568*t**6-272*t**5+536*t**4)/(1+t**17-2*t**16+2*t**15-t**14-2*t**13+4*t**12-5*t**11+4*t**10-t**9-t**8+4*t**7-5*t**6+4*t**5-2*t**4-t**3+2*t**2-2*t)', '2211': '(-429*t**18+834*t**16+783*t**15+1597*t**14+1109*t**13-1041*t**12-1819*t**11-2149*t**10-2470*t**9-661*t**8+1059*t**7+1004*t**6+1385*t**5+891*t**4)/(1+t**15-t**13-2*t**11-t**10+2*t**9+t**8+t**7+2*t**6-t**5-2*t**4-t**2)', '222': '(-224*t**24+449*t**23+3*t**22-240*t**21+657*t**20-458*t**19-39*t**18+223*t**17-482*t**16+12*t**15-19*t**14+12*t**13+241*t**12-472*t**11+13*t**10+253*t**9-677*t**8+471*t**7+55*t**6-246*t**5+499*t**4)/(1+t**21-2*t**20+t**19+t**18-3*t**17+3*t**16-t**15-t**14+2*t**13-t**12-t**9+2*t**8-t**7-t**6+3*t**5-3*t**4+t**3+t**2-2*t)', '3111': '(-448*t**24+924*t**23-28*t**22-468*t**21+1328*t**20-965*t**19-41*t**18+431*t**17-957*t**16+8*t**15-2*t**14+8*t**13+459*t**12-929*t**11+39*t**10+475*t**9-1328*t**8+972*t**7+52*t**6-436*t**5+968*t**4)/(1+t**21-2*t**20+t**19+t**18-3*t**17+3*t**16-t**15-t**14+2*t**13-t**12-t**9+2*t**8-t**7-t**6+3*t**5-3*t**4+t**3+t**2-2*t)', '321': '(-651*t**20+756*t**19+1374*t**18-741*t**17+663*t**16+1944*t**15-294*t**14-2310*t**13-802*t**12-100*t**11-2124*t**10-1912*t**9+960*t**8+1568*t**7-538*t**6+855*t**5+1476*t**4)/(1+t**17-t**16-t**15+2*t**14-t**13-2*t**12+t**11+2*t**10-t**9-t**8+2*t**7+t**6-2*t**5-t**4+2*t**3-t**2-t)', '33': '(-180*t**24+416*t**23-12*t**22-196*t**21+588*t**20-456*t**19+7*t**18+142*t**17-422*t**16+17*t**15-25*t**14+17*t**13+194*t**12-438*t**11+27*t**10+212*t**9-612*t**8+472*t**7+8*t**6-164*t**5+436*t**4)/(1+t**21-2*t**20+t**19+t**18-3*t**17+3*t**16-t**15-t**14+2*t**13-t**12-t**9+2*t**8-t**7-t**6+3*t**5-3*t**4+t**3+t**2-2*t)', '411': '(-364*t**24+848*t**23-36*t**22-392*t**21+1176*t**20-904*t**19-21*t**18+329*t**17-861*t**16+7*t**15+2*t**14+7*t**13+371*t**12-847*t**11+43*t**10+400*t**9-1176*t**8+912*t**7+28*t**6-328*t**5+868*t**4)/(1+t**21-2*t**20+t**19+t**18-3*t**17+3*t**16-t**15-t**14+2*t**13-t**12-t**9+2*t**8-t**7-t**6+3*t**5-3*t**4+t**3+t**2-2*t)', '42': '(-308*t**18+110*t**17+834*t**16+783*t**15+1333*t**14+768*t**13-1151*t**12-1819*t**11-2005*t**10-2097*t**9-441*t**8+1059*t**7+1004*t**6+1241*t**5+782*t**4)/(1+t**15-t**13-2*t**11-t**10+2*t**9+t**8+t**7+2*t**6-t**5-2*t**4-t**2)', '51': '(-147*t**20+387*t**19-152*t**18+202*t**17+528*t**16-597*t**15+643*t**14-639*t**13-292*t**12-48*t**11-914*t**10+585*t**9-482*t**8+266*t**7+431*t**6-140*t**5+400*t**4)/(1+t**17-2*t**16+2*t**15-t**14-2*t**13+4*t**12-5*t**11+4*t**10-t**9-t**8+4*t**7-5*t**6+4*t**5-2*t**4-t**3+2*t**2-2*t)', '6': '(-124*t**19+3*t**21-20*t**22+63*t**23+105*t**24+16*t**25+50*t**26+44*t**27-23*t**28-8*t**13-50*t**14-45*t**15-48*t**16-44*t**17-65*t**18-38*t**20-4*t**9+30*t**10-64*t**11+132*t**7-105*t**12+65*t**6+43*t**5+38*t**8+80*t**4)/(1+t**25-t**24+t**22-2*t**21+t**19-t**18+2*t**16-t**15-t**10+2*t**9-t**7+t**6-2*t**4+t**3-t)', 'author': 'Fabien Clery', 'description': 'Hilbert-Poincare series for the sum of the canonical $S_6$-submodule $M_k^p$ ($k\\ge 4$) of $M_{k,92}(Gamma_0(2))$ corresponding to the irreducible $S_6$ representation defined by the partition $p$. The action of $S_6$ is given by identifying $S_6$ with the quotient $SP(4,Z)/Gamma(2)$ and letting act $SP(4,Z)$ in the natural way.', 'group': 'Gamma(2)', 'id': 30, 'note': ['if $j\\\\ge2 then only $k\\\\ge 4$'], 'space': 'total', 'sym_power': 92, 'title': 'Hilbert Poincare series'}