Formats: - HTML - YAML - JSON - 2025-12-16T03:31:29.328347
Query: /api/smf_dims/?_offset=0
Show schema

{'111111': '(-7*t**28+5*t**27+3*t**26-4*t**25+14*t**24+6*t**23-3*t**22+4*t**21-17*t**19-2*t**18-5*t**17-2*t**16-4*t**15-3*t**14+6*t**13-14*t**12-5*t**11+5*t**10-3*t**9+20*t**7+2*t**6+6*t**5+11*t**4)/(1+t**25-t**24+t**22-2*t**21+t**19-t**18+2*t**16-t**15-t**10+2*t**9-t**7+t**6-2*t**4+t**3-t)', '21111': '(-24*t**20+42*t**19-25*t**18+15*t**17+62*t**16-72*t**15+79*t**14-56*t**13-32*t**12+14*t**11-103*t**10+67*t**9-48*t**8+17*t**7+55*t**6-26*t**5+48*t**4)/(1+t**17-2*t**16+2*t**15-t**14-2*t**13+4*t**12-5*t**11+4*t**10-t**9-t**8+4*t**7-5*t**6+4*t**5-2*t**4-t**3+2*t**2-2*t)', '2211': '(-33*t**18+60*t**16+52*t**15+113*t**14+68*t**13-94*t**12-144*t**11-163*t**10-176*t**9-27*t**8+102*t**7+92*t**6+118*t**5+71*t**4)/(1+t**15-t**13-2*t**11-t**10+2*t**9+t**8+t**7+2*t**6-t**5-2*t**4-t**2)', '222': '(-14*t**24+27*t**23+3*t**22-15*t**21+36*t**20-24*t**19-10*t**18+15*t**17-35*t**16+4*t**15-6*t**14+3*t**13+22*t**12-37*t**11+5*t**10+18*t**9-42*t**8+28*t**7+17*t**6-24*t**5+42*t**4)/(1+t**21-2*t**20+t**19+t**18-3*t**17+3*t**16-t**15-t**14+2*t**13-t**12-t**9+2*t**8-t**7-t**6+3*t**5-3*t**4+t**3+t**2-2*t)', '3111': '(-30*t**24+63*t**23-36*t**21+87*t**20-66*t**19-14*t**18+34*t**17-73*t**16+2*t**15+t**14+2*t**13+35*t**12-65*t**11+5*t**10+38*t**9-86*t**8+68*t**7+20*t**6-38*t**5+79*t**4)/(1+t**21-2*t**20+t**19+t**18-3*t**17+3*t**16-t**15-t**14+2*t**13-t**12-t**9+2*t**8-t**7-t**6+3*t**5-3*t**4+t**3+t**2-2*t)', '321': '(-39*t**20+54*t**19+91*t**18-54*t**17+38*t**16+120*t**15-48*t**14-174*t**13-60*t**12-13*t**11-142*t**10-106*t**9+93*t**8+125*t**7-15*t**6+72*t**5+110*t**4)/(1+t**17-t**16-t**15+2*t**14-t**13-2*t**12+t**11+2*t**10-t**9-t**8+2*t**7+t**6-2*t**5-t**4+2*t**3-t**2-t)', '33': '(-9*t**24+27*t**23-4*t**22-9*t**21+33*t**20-36*t**19+9*t**18-6*t**17-23*t**16+7*t**15-11*t**14+8*t**13+14*t**12-35*t**11+9*t**10+17*t**9-44*t**8+43*t**7-3*t**6-3*t**5+29*t**4)/(1+t**21-2*t**20+t**19+t**18-3*t**17+3*t**16-t**15-t**14+2*t**13-t**12-t**9+2*t**8-t**7-t**6+3*t**5-3*t**4+t**3+t**2-2*t)', '411': '(-18*t**24+54*t**23-3*t**22-27*t**21+69*t**20-63*t**19-6*t**18+15*t**17-57*t**16+4*t**15-t**14+4*t**13+22*t**12-56*t**11+7*t**10+31*t**9-70*t**8+67*t**7+9*t**6-15*t**5+60*t**4)/(1+t**21-2*t**20+t**19+t**18-3*t**17+3*t**16-t**15-t**14+2*t**13-t**12-t**9+2*t**8-t**7-t**6+3*t**5-3*t**4+t**3+t**2-2*t)', '42': '(-13*t**18+16*t**17+60*t**16+52*t**15+64*t**14+16*t**13-110*t**12-145*t**11-133*t**10-111*t**9+5*t**8+102*t**7+93*t**6+88*t**5+55*t**4)/(1+t**15-t**13-2*t**11-t**10+2*t**9+t**8+t**7+2*t**6-t**5-2*t**4-t**2)', '51': '(-5*t**20+24*t**19-5*t**18+9*t**17+30*t**16-42*t**15+25*t**14-39*t**13-32*t**12-48*t**10+37*t**9-14*t**8+21*t**7+31*t**6-3*t**5+24*t**4)/(1+t**17-2*t**16+2*t**15-t**14-2*t**13+4*t**12-5*t**11+4*t**10-t**9-t**8+4*t**7-5*t**6+4*t**5-2*t**4-t**3+2*t**2-2*t)', '6': '(3*t**27+4*t**26+3*t**25+3*t**24+3*t**23-3*t**22-5*t**21-6*t**20-5*t**19-8*t**18-3*t**17+t**16-5*t**15-5*t**14+3*t**13-4*t**12-5*t**11+10*t**10+3*t**9+5*t**8+10*t**7+7*t**6+t**5+6*t**4)/(1+t**25-t**24+t**22-2*t**21+t**19-t**18+2*t**16-t**15-t**10+2*t**9-t**7+t**6-2*t**4+t**3-t)', 'author': 'Fabien Clery', 'description': 'Hilbert-Poincare series for the sum of the canonical $S_6$-submodule $M_k^p$ ($k\\ge 4$) of $M_{k,38}(Gamma_0(2))$ corresponding to the irreducible $S_6$ representation defined by the partition $p$. The action of $S_6$ is given by identifying $S_6$ with the quotient $SP(4,Z)/Gamma(2)$ and letting act $SP(4,Z)$ in the natural way.', 'group': 'Gamma(2)', 'id': 29, 'note': ['if $j\\\\ge2 then only $k\\\\ge 4$'], 'space': 'total', 'sym_power': 38, 'title': 'Hilbert Poincare series'}