Query:
/api/smf_dims/?_offset=0
{'111111': '(-25*t**16-26*t**17-29*t**18-56*t**19-46*t**20-31*t**21+3*t**22+19*t**23+41*t**24+40*t**25+34*t**26+11*t**27+5*t**28-4*t**29-14*t**30+24*t**4+35*t**5+47*t**6+60*t**7+50*t**8+36*t**9+t**10-14*t**11-37*t**12-35*t**13-30*t**14-6*t**15)/(1+t**27-t**23-t**22-t**21+t**18+t**17+t**16-t**15-t**12+t**11+t**10+t**9-t**6-t**5-t**4)', '21111': '(-56*t**22+41*t**21-11*t**20+77*t**19+133*t**18+21*t**17+176*t**16-110*t**15-17*t**14-179*t**13-301*t**12-66*t**11-222*t**10+76*t**9+39*t**8+109*t**7+178*t**6+52*t**5+113*t**4)/(1+t**19-t**18+t**17-t**16-t**15+t**14-3*t**13+3*t**12-2*t**11+2*t**10+2*t**9-2*t**8+3*t**7-3*t**6+t**5-t**4-t**3+t**2-t)', '2211': '(-80*t**18+153*t**16+137*t**15+285*t**14+185*t**13-218*t**12-352*t**11-402*t**10-447*t**9-94*t**8+228*t**7+210*t**6+276*t**5+172*t**4)/(1+t**15-t**13-2*t**11-t**10+2*t**9+t**8+t**7+2*t**6-t**5-2*t**4-t**2)', '222': '(-40*t**26+40*t**25+42*t**24+34*t**23+74*t**22-12*t**21+16*t**20-48*t**19-69*t**18-43*t**17-92*t**16+2*t**15+46*t**14-37*t**13-36*t**12-31*t**11-68*t**10+15*t**9-10*t**8+50*t**7+76*t**6+45*t**5+99*t**4)/(1+t**23-t**22-t**19+t**18-t**17+t**16+t**13-t**12-t**11+t**10+t**7-t**6+t**5-t**4-t)', '3111': '(-80*t**26+90*t**25+80*t**24+74*t**23+140*t**22-32*t**21+36*t**20-114*t**19-120*t**18-98*t**17-174*t**16+7*t**15+91*t**14-83*t**13-69*t**12-68*t**11-129*t**10+39*t**9-25*t**8+121*t**7+130*t**6+106*t**5+184*t**4)/(1+t**23-t**22-t**19+t**18-t**17+t**16+t**13-t**12-t**11+t**10+t**7-t**6+t**5-t**4-t)', '321': '(-108*t**22+28*t**21+267*t**20+245*t**19+213*t**18+295*t**17+348*t**16-192*t**15-677*t**14-617*t**13-552*t**12-708*t**11-481*t**10+198*t**9+446*t**8+407*t**7+375*t**6+448*t**5+277*t**4)/(1+t**19-t**17-t**14-2*t**13+t**12+2*t**11+2*t**8+t**7-2*t**6-t**5-t**2)', '33': '(-26*t**26+46*t**25+40*t**24+31*t**23+63*t**22-25*t**21+14*t**20-65*t**19-57*t**18-50*t**17-71*t**16+6*t**15+29*t**14-41*t**13-36*t**12-26*t**11-59*t**10+30*t**9-11*t**8+71*t**7+60*t**6+56*t**5+74*t**4)/(1+t**23-t**22-t**19+t**18-t**17+t**16+t**13-t**12-t**11+t**10+t**7-t**6+t**5-t**4-t)', '411': '(-54*t**26+94*t**25+80*t**24+70*t**23+113*t**22-40*t**21+18*t**20-126*t**19-111*t**18-102*t**17-141*t**16+9*t**15+63*t**14-85*t**13-72*t**12-60*t**11-105*t**10+49*t**9-9*t**8+135*t**7+120*t**6+110*t**5+150*t**4)/(1+t**23-t**22-t**19+t**18-t**17+t**16+t**13-t**12-t**11+t**10+t**7-t**6+t**5-t**4-t)', '42': '(-44*t**18+30*t**17+153*t**16+137*t**15+201*t**14+89*t**13-248*t**12-352*t**11-353*t**10-334*t**9-34*t**8+228*t**7+210*t**6+227*t**5+143*t**4)/(1+t**15-t**13-2*t**11-t**10+2*t**9+t**8+t**7+2*t**6-t**5-2*t**4-t**2)', '51': '(-18*t**22+44*t**21+28*t**20+74*t**19+94*t**18+10*t**17+64*t**16-124*t**15-88*t**14-180*t**13-216*t**12-51*t**11-105*t**10+89*t**9+69*t**8+115*t**7+130*t**6+50*t**5+68*t**4)/(1+t**19-t**18+t**17-t**16-t**15+t**14-3*t**13+3*t**12-2*t**11+2*t**10+2*t**9-2*t**8+3*t**7-3*t**6+t**5-t**4-t**3+t**2-t)', '6': '(-26*t**16-21*t**17-30*t**18-40*t**19-46*t**20-37*t**21-23*t**22-3*t**23+15*t**24+28*t**25+30*t**26+21*t**27+17*t**28+6*t**29-2*t**30+14*t**4+19*t**5+37*t**6+44*t**7+51*t**8+41*t**9+28*t**10+7*t**11-10*t**12-25*t**13-25*t**14-17*t**15)/(1+t**27-t**23-t**22-t**21+t**18+t**17+t**16-t**15-t**12+t**11+t**10+t**9-t**6-t**5-t**4)', 'author': 'Fabien Clery', 'description': 'Hilbert-Poincare series for the sum of the canonical $S_6$-submodule $M_k^p$ ($k\\ge 4$) of $M_{k,52}(Gamma_0(2))$ corresponding to the irreducible $S_6$ representation defined by the partition $p$. The action of $S_6$ is given by identifying $S_6$ with the quotient $SP(4,Z)/Gamma(2)$ and letting act $SP(4,Z)$ in the natural way.', 'group': 'Gamma(2)', 'id': 26, 'note': ['if $j\\\\ge2 then only $k\\\\ge 4$'], 'space': 'total', 'sym_power': 52, 'title': 'Hilbert Poincare series'}