Formats: - HTML - YAML - JSON - 2025-12-16T03:31:29.146815
Query: /api/smf_dims/?_offset=0
Show schema

{'111111': '(-2*t**30+t**27+3*t**26+3*t**25+3*t**24-4*t**21-4*t**20-5*t**19-t**18-2*t**17-t**16+t**15-2*t**14-t**13-t**12+3*t**11+2*t**10+7*t**9+6*t**8+7*t**7+4*t**6+4*t**5+2*t**4)/(1+t**27-t**23-t**22-t**21+t**18+t**17+t**16-t**15-t**12+t**11+t**10+t**9-t**6-t**5-t**4)', '21111': '(-6*t**22+3*t**21-2*t**20+6*t**19+11*t**18+t**17+14*t**16-9*t**15-3*t**14-14*t**13-27*t**12-4*t**11-15*t**10+8*t**9+11*t**8+10*t**7+21*t**6+5*t**5+13*t**4)/(1+t**19-t**18+t**17-t**16-t**15+t**14-3*t**13+3*t**12-2*t**11+2*t**10+2*t**9-2*t**8+3*t**7-3*t**6+t**5-t**4-t**3+t**2-t)', '2211': '(-7*t**18+12*t**16+9*t**15+22*t**14+11*t**13-23*t**12-30*t**11-33*t**10-34*t**9+t**8+27*t**7+23*t**6+29*t**5+16*t**4)/(1+t**15-t**13-2*t**11-t**10+2*t**9+t**8+t**7+2*t**6-t**5-2*t**4-t**2)', '222': '(-2*t**26+2*t**25+3*t**24+2*t**23+4*t**22-t**21-3*t**20-t**19-9*t**18-2*t**17-6*t**16+5*t**14-2*t**13+t**12-2*t**11+t**9+7*t**8+t**7+13*t**6+2*t**5+10*t**4)/(1+t**23-t**22-t**19+t**18-t**17+t**16+t**13-t**12-t**11+t**10+t**7-t**6+t**5-t**4-t)', '3111': '(-5*t**26+6*t**25+7*t**24+4*t**23+8*t**22-4*t**21-4*t**20-8*t**19-14*t**18-6*t**17-12*t**16+2*t**15+11*t**14-4*t**13-t**12-2*t**11-3*t**10+6*t**9+10*t**8+10*t**7+19*t**6+8*t**5+18*t**4)/(1+t**23-t**22-t**19+t**18-t**17+t**16+t**13-t**12-t**11+t**10+t**7-t**6+t**5-t**4-t)', '321': '(-6*t**22+3*t**21+19*t**20+17*t**19+11*t**18+13*t**17+12*t**16-27*t**15-61*t**14-51*t**13-38*t**12-39*t**11-15*t**10+38*t**9+58*t**8+49*t**7+43*t**6+41*t**5+25*t**4)/(1+t**19-t**17-t**14-2*t**13+t**12+2*t**11+2*t**8+t**7-2*t**6-t**5-t**2)', '33': '(-t**26+5*t**25+2*t**24+t**23+4*t**22-6*t**21-8*t**19-5*t**18-4*t**17-3*t**16+3*t**15+2*t**14-2*t**13-t**12+2*t**11-3*t**10+9*t**9+11*t**7+6*t**6+7*t**5+4*t**4)/(1+t**23-t**22-t**19+t**18-t**17+t**16+t**13-t**12-t**11+t**10+t**7-t**6+t**5-t**4-t)', '411': '(-2*t**26+8*t**25+7*t**24+2*t**23+5*t**22-8*t**21-4*t**20-12*t**19-11*t**18-6*t**17-8*t**16+4*t**15+6*t**14-4*t**13-4*t**12+2*t**11-t**10+12*t**9+8*t**8+16*t**7+15*t**6+10*t**5+11*t**4)/(1+t**23-t**22-t**19+t**18-t**17+t**16+t**13-t**12-t**11+t**10+t**7-t**6+t**5-t**4-t)', '42': '(-t**18+4*t**17+12*t**16+9*t**15+5*t**14-3*t**13-27*t**12-31*t**11-21*t**10-13*t**9+9*t**8+27*t**7+24*t**6+17*t**5+12*t**4)/(1+t**15-t**13-2*t**11-t**10+2*t**9+t**8+t**7+2*t**6-t**5-2*t**4-t**2)', '51': '(3*t**21+5*t**20+4*t**19+5*t**18-2*t**17-4*t**16-12*t**15-14*t**14-13*t**13-13*t**12+t**11+4*t**10+13*t**9+13*t**8+13*t**7+11*t**6+5*t**5+4*t**4)/(1+t**19-t**18+t**17-t**16-t**15+t**14-3*t**13+3*t**12-2*t**11+2*t**10+2*t**9-2*t**8+3*t**7-3*t**6+t**5-t**4-t**3+t**2-t)', '6': '(t**29+2*t**28+2*t**27+2*t**26+t**25-2*t**24-3*t**23-5*t**22-5*t**21-4*t**20-2*t**19-t**18+t**17+t**14+4*t**12+4*t**11+7*t**10+6*t**9+6*t**8+3*t**7+4*t**6+t**4)/(1+t**27-t**23-t**22-t**21+t**18+t**17+t**16-t**15-t**12+t**11+t**10+t**9-t**6-t**5-t**4)', 'author': 'Fabien Clery', 'description': 'Hilbert-Poincare series for the sum of the canonical $S_6$-submodule $M_k^p$ ($k\\ge 4$) of $M_{k,22}(Gamma_0(2))$ corresponding to the irreducible $S_6$ representation defined by the partition $p$. The action of $S_6$ is given by identifying $S_6$ with the quotient $SP(4,Z)/Gamma(2)$ and letting act $SP(4,Z)$ in the natural way.', 'group': 'Gamma(2)', 'id': 25, 'note': ['if $j\\\\ge2 then only $k\\\\ge 4$'], 'space': 'total', 'sym_power': 22, 'title': 'Hilbert Poincare series'}