Query:
/api/smf_dims/?_offset=0
{'111111': '(-24*t**26+18*t**25+16*t**24+12*t**23+40*t**22-11*t**21+19*t**20-22*t**19-19*t**18-19*t**17-41*t**16+t**15+25*t**14-16*t**13-16*t**12-10*t**11-40*t**10+13*t**9-18*t**8+23*t**7+20*t**6+20*t**5+42*t**4)/(1+t**23-t**22-t**19+t**18-t**17+t**16+t**13-t**12-t**11+t**10+t**7-t**6+t**5-t**4-t)', '21111': '(-99*t**22+78*t**21-18*t**20+147*t**19+242*t**18+45*t**17+324*t**16-201*t**15-23*t**14-335*t**13-538*t**12-130*t**11-409*t**10+132*t**9+54*t**8+197*t**7+308*t**6+94*t**5+197*t**4)/(1+t**19-t**18+t**17-t**16-t**15+t**14-3*t**13+3*t**12-2*t**11+2*t**10+2*t**9-2*t**8+3*t**7-3*t**6+t**5-t**4-t**3+t**2-t)', '2211': '(-147*t**14+147*t**13+283*t**12-24*t**11+275*t**10-324*t**9-592*t**8+27*t**7-125*t**6+181*t**5+312*t**4)/(1+t**11-t**10-t**9+t**8-2*t**7+2*t**6+2*t**5-2*t**4+t**3-t**2-t)', '222': '(-75*t**26+76*t**25+78*t**24+66*t**23+140*t**22-20*t**21+40*t**20-91*t**19-117*t**18-82*t**17-168*t**16+3*t**15+82*t**14-72*t**13-71*t**12-62*t**11-133*t**10+24*t**9-33*t**8+94*t**7+125*t**6+85*t**5+176*t**4)/(1+t**23-t**22-t**19+t**18-t**17+t**16+t**13-t**12-t**11+t**10+t**7-t**6+t**5-t**4-t)', '3111': '(-150*t**26+165*t**25+150*t**24+140*t**23+270*t**22-50*t**21+85*t**20-205*t**19-210*t**18-180*t**17-323*t**16+9*t**15+163*t**14-156*t**13-137*t**12-132*t**11-257*t**10+59*t**9-72*t**8+214*t**7+222*t**6+190*t**5+335*t**4)/(1+t**23-t**22-t**19+t**18-t**17+t**16+t**13-t**12-t**11+t**10+t**7-t**6+t**5-t**4-t)', '321': '(-209*t**18+254*t**17+453*t**16-36*t**15-48*t**14-40*t**13+376*t**12-552*t**11-951*t**10+44*t**9+57*t**8+48*t**7-158*t**6+306*t**5+508*t**4)/(1+t**15-t**14-t**13+t**12-2*t**9+2*t**8+2*t**7-2*t**6+t**3-t**2-t)', '33': '(-54*t**26+84*t**25+75*t**24+63*t**23+122*t**22-36*t**21+34*t**20-113*t**19-101*t**18-92*t**17-137*t**16+7*t**15+58*t**14-78*t**13-70*t**12-57*t**11-117*t**10+42*t**9-30*t**8+120*t**7+105*t**6+99*t**5+141*t**4)/(1+t**23-t**22-t**19+t**18-t**17+t**16+t**13-t**12-t**11+t**10+t**7-t**6+t**5-t**4-t)', '411': '(-110*t**26+170*t**25+150*t**24+135*t**23+229*t**22-60*t**21+55*t**20-220*t**19-199*t**18-185*t**17-274*t**16+11*t**15+121*t**14-159*t**13-140*t**12-123*t**11-219*t**10+71*t**9-44*t**8+231*t**7+210*t**6+195*t**5+285*t**4)/(1+t**23-t**22-t**19+t**18-t**17+t**16+t**13-t**12-t**11+t**10+t**7-t**6+t**5-t**4-t)', '42': '(-91*t**14+140*t**13+234*t**12-24*t**11+148*t**10-295*t**9-494*t**8+27*t**7-53*t**6+157*t**5+264*t**4)/(1+t**11-t**10-t**9+t**8-2*t**7+2*t**6+2*t**5-2*t**4+t**3-t**2-t)', '51': '(-40*t**22+81*t**21+43*t**20+142*t**19+183*t**18+31*t**17+150*t**16-217*t**15-136*t**14-334*t**13-411*t**12-111*t**11-229*t**10+147*t**9+104*t**8+203*t**7+238*t**6+91*t**5+130*t**4)/(1+t**19-t**18+t**17-t**16-t**15+t**14-3*t**13+3*t**12-2*t**11+2*t**10+2*t**9-2*t**8+3*t**7-3*t**6+t**5-t**4-t**3+t**2-t)', '6': '(-5*t**26+15*t**25+19*t**24+9*t**23+19*t**22-6*t**21-5*t**20-14*t**19-27*t**18-11*t**17-25*t**16+t**15+7*t**14-15*t**13-17*t**12-9*t**11-17*t**10+6*t**9+7*t**8+15*t**7+28*t**6+12*t**5+26*t**4)/(1+t**23-t**22-t**19+t**18-t**17+t**16+t**13-t**12-t**11+t**10+t**7-t**6+t**5-t**4-t)', 'author': 'Fabien Clery', 'description': 'Hilbert-Poincare series for the sum of the canonical $S_6$-submodule $M_k^p$ ($k\\ge 4$) of $M_{k,64}(Gamma_0(2))$ corresponding to the irreducible $S_6$ representation defined by the partition $p$. The action of $S_6$ is given by identifying $S_6$ with the quotient $SP(4,Z)/Gamma(2)$ and letting act $SP(4,Z)$ in the natural way.', 'group': 'Gamma(2)', 'id': 18, 'note': ['if $j\\\\ge2 then only $k\\\\ge 4$'], 'space': 'total', 'sym_power': 64, 'title': 'Hilbert Poincare series'}