Query:
/api/smf_dims/?_offset=0
{'111111': '(-5*t**26+4*t**25+2*t**24+2*t**23+7*t**22-4*t**21+4*t**20-5*t**19-2*t**18-4*t**17-7*t**16+t**15+5*t**14-3*t**13-2*t**12-t**11-7*t**10+5*t**9-3*t**8+6*t**7+2*t**6+5*t**5+7*t**4)/(1+t**23-t**22-t**19+t**18-t**17+t**16+t**13-t**12-t**11+t**10+t**7-t**6+t**5-t**4-t)', '21111': '(-18*t**22+12*t**21-5*t**20+22*t**19+38*t**18+4*t**17+50*t**16-34*t**15-7*t**14-52*t**13-90*t**12-16*t**11-61*t**10+26*t**9+20*t**8+34*t**7+59*t**6+16*t**5+37*t**4)/(1+t**19-t**18+t**17-t**16-t**15+t**14-3*t**13+3*t**12-2*t**11+2*t**10+2*t**9-2*t**8+3*t**7-3*t**6+t**5-t**4-t**3+t**2-t)', '2211': '(-24*t**14+24*t**13+43*t**12-6*t**11+44*t**10-58*t**9-93*t**8+8*t**7-19*t**6+36*t**5+52*t**4)/(1+t**11-t**10-t**9+t**8-2*t**7+2*t**6+2*t**5-2*t**4+t**3-t**2-t)', '222': '(-10*t**26+11*t**25+11*t**24+9*t**23+18*t**22-4*t**21-t**20-12*t**19-24*t**18-11*t**17-25*t**16+t**15+14*t**14-10*t**13-6*t**12-8*t**11-13*t**10+5*t**9+6*t**8+13*t**7+29*t**6+12*t**5+30*t**4)/(1+t**23-t**22-t**19+t**18-t**17+t**16+t**13-t**12-t**11+t**10+t**7-t**6+t**5-t**4-t)', '3111': '(-21*t**26+24*t**25+24*t**24+18*t**23+36*t**22-12*t**21+t**20-32*t**19-41*t**18-26*t**17-49*t**16+4*t**15+29*t**14-20*t**13-16*t**12-14*t**11-29*t**10+16*t**9+7*t**8+36*t**7+48*t**6+30*t**5+57*t**4)/(1+t**23-t**22-t**19+t**18-t**17+t**16+t**13-t**12-t**11+t**10+t**7-t**6+t**5-t**4-t)', '321': '(-27*t**18+37*t**17+64*t**16-8*t**15-14*t**14-10*t**13+43*t**12-86*t**11-140*t**10+12*t**9+19*t**8+14*t**7-11*t**6+53*t**5+82*t**4)/(1+t**15-t**14-t**13+t**12-2*t**9+2*t**8+2*t**7-2*t**6+t**3-t**2-t)', '33': '(-6*t**26+15*t**25+10*t**24+7*t**23+16*t**22-12*t**21+2*t**20-23*t**19-17*t**18-15*t**17-17*t**16+4*t**15+8*t**14-11*t**13-8*t**12-3*t**11-14*t**10+16*t**9-t**8+27*t**7+19*t**6+19*t**5+19*t**4)/(1+t**23-t**22-t**19+t**18-t**17+t**16+t**13-t**12-t**11+t**10+t**7-t**6+t**5-t**4-t)', '411': '(-12*t**26+27*t**25+24*t**24+15*t**23+27*t**22-18*t**21-3*t**20-39*t**19-36*t**18-27*t**17-37*t**16+6*t**15+18*t**14-21*t**13-19*t**12-9*t**11-21*t**10+24*t**9+9*t**8+45*t**7+42*t**6+33*t**5+42*t**4)/(1+t**23-t**22-t**19+t**18-t**17+t**16+t**13-t**12-t**11+t**10+t**7-t**6+t**5-t**4-t)', '42': '(-8*t**14+20*t**13+31*t**12-6*t**11+4*t**10-42*t**9-69*t**8+7*t**7+7*t**6+23*t**5+40*t**4)/(1+t**11-t**10-t**9+t**8-2*t**7+2*t**6+2*t**5-2*t**4+t**3-t**2-t)', '51': '(-3*t**22+13*t**21+11*t**20+20*t**19+22*t**18-t**17+5*t**16-41*t**15-34*t**14-53*t**13-54*t**12-9*t**11-13*t**10+34*t**9+29*t**8+39*t**7+37*t**6+16*t**5+17*t**4)/(1+t**19-t**18+t**17-t**16-t**15+t**14-3*t**13+3*t**12-2*t**11+2*t**10+2*t**9-2*t**8+3*t**7-3*t**6+t**5-t**4-t**3+t**2-t)', '6': '(3*t**25+3*t**24+t**23+t**22-2*t**21-4*t**20-t**19-6*t**18-t**17-2*t**16+2*t**14-3*t**13-2*t**12-t**11+2*t**9+5*t**8+t**7+7*t**6+t**5+3*t**4)/(1+t**23-t**22-t**19+t**18-t**17+t**16+t**13-t**12-t**11+t**10+t**7-t**6+t**5-t**4-t)', 'author': 'Fabien Clery', 'description': 'Hilbert-Poincare series for the sum of the canonical $S_6$-submodule $M_k^p$ ($k\\ge 4$) of $M_{k,34}(Gamma_0(2))$ corresponding to the irreducible $S_6$ representation defined by the partition $p$. The action of $S_6$ is given by identifying $S_6$ with the quotient $SP(4,Z)/Gamma(2)$ and letting act $SP(4,Z)$ in the natural way.', 'group': 'Gamma(2)', 'id': 17, 'note': ['if $j\\\\ge2 then only $k\\\\ge 4$'], 'space': 'total', 'sym_power': 34, 'title': 'Hilbert Poincare series'}