Formats: - HTML - YAML - JSON - 2025-12-16T03:30:49.202519
Query: /api/smf_dims/?_offset=0
Show schema

{'111111': '(-207*t**19+55*t**21-17*t**22+111*t**23+184*t**24-23*t**25+54*t**26+60*t**27-76*t**28+30*t**13-54*t**14-59*t**15-54*t**16-67*t**17-61*t**18-3*t**20-54*t**9+24*t**10-110*t**11+215*t**7-184*t**12+61*t**6+68*t**5+3*t**8+137*t**4)/(1+t**25-t**24+t**22-2*t**21+t**19-t**18+2*t**16-t**15-t**10+2*t**9-t**7+t**6-2*t**4+t**3-t)', '21111': '(-324*t**20+612*t**19-336*t**18+268*t**17+908*t**16-984*t**15+1209*t**14-914*t**13-342*t**12+63*t**11-1528*t**10+969*t**9-868*t**8+315*t**7+666*t**6-318*t**5+637*t**4)/(1+t**17-2*t**16+2*t**15-t**14-2*t**13+4*t**12-5*t**11+4*t**10-t**9-t**8+4*t**7-5*t**6+4*t**5-2*t**4-t**3+2*t**2-2*t)', '2211': '(-520*t**18+1006*t**16+949*t**15+1939*t**14+1351*t**13-1241*t**12-2185*t**11-2594*t**10-2990*t**9-811*t**8+1261*t**7+1199*t**6+1664*t**5+1071*t**4)/(1+t**15-t**13-2*t**11-t**10+2*t**9+t**8+t**7+2*t**6-t**5-2*t**4-t**2)', '222': '(-268*t**24+544*t**23-4*t**22-280*t**21+788*t**20-556*t**19-36*t**18+260*t**17-575*t**16+14*t**15-21*t**14+13*t**13+286*t**12-569*t**11+22*t**10+293*t**9-809*t**8+570*t**7+53*t**6-284*t**5+592*t**4)/(1+t**21-2*t**20+t**19+t**18-3*t**17+3*t**16-t**15-t**14+2*t**13-t**12-t**9+2*t**8-t**7-t**6+3*t**5-3*t**4+t**3+t**2-2*t)', '3111': '(-540*t**24+1108*t**23-20*t**22-576*t**21+1612*t**20-1156*t**19-59*t**18+534*t**17-1158*t**16+7*t**15+t**14+7*t**13+550*t**12-1110*t**11+30*t**10+583*t**9-1611*t**8+1163*t**7+70*t**6-538*t**5+1169*t**4)/(1+t**21-2*t**20+t**19+t**18-3*t**17+3*t**16-t**15-t**14+2*t**13-t**12-t**9+2*t**8-t**7-t**6+3*t**5-3*t**4+t**3+t**2-2*t)', '321': '(-792*t**20+912*t**19+1666*t**18-895*t**17+806*t**16+2366*t**15-335*t**14-2783*t**13-964*t**12-114*t**11-2571*t**10-2332*t**9+1143*t**8+1886*t**7-666*t**6+1024*t**5+1781*t**4)/(1+t**17-t**16-t**15+2*t**14-t**13-2*t**12+t**11+2*t**10-t**9-t**8+2*t**7+t**6-2*t**5-t**4+2*t**3-t**2-t)', '33': '(-224*t**24+512*t**23-20*t**22-236*t**21+720*t**20-556*t**19+12*t**18+176*t**17-512*t**16+17*t**15-26*t**14+18*t**13+239*t**12-535*t**11+35*t**10+254*t**9-746*t**8+573*t**7+4*t**6-200*t**5+528*t**4)/(1+t**21-2*t**20+t**19+t**18-3*t**17+3*t**16-t**15-t**14+2*t**13-t**12-t**9+2*t**8-t**7-t**6+3*t**5-3*t**4+t**3+t**2-2*t)', '411': '(-448*t**24+1024*t**23-28*t**22-492*t**21+1444*t**20-1088*t**19-36*t**18+420*t**17-1052*t**16+9*t**15-t**14+9*t**13+457*t**12-1026*t**11+37*t**10+501*t**9-1445*t**8+1097*t**7+44*t**6-420*t**5+1060*t**4)/(1+t**21-2*t**20+t**19+t**18-3*t**17+3*t**16-t**15-t**14+2*t**13-t**12-t**9+2*t**8-t**7-t**6+3*t**5-3*t**4+t**3+t**2-2*t)', '42': '(-376*t**18+132*t**17+1006*t**16+949*t**15+1627*t**14+943*t**13-1373*t**12-2186*t**11-2425*t**10-2546*t**9-547*t**8+1261*t**7+1200*t**6+1495*t**5+939*t**4)/(1+t**15-t**13-2*t**11-t**10+2*t**9+t**8+t**7+2*t**6-t**5-2*t**4-t**2)', '51': '(-184*t**20+476*t**19-196*t**18+256*t**17+640*t**16-724*t**15+800*t**14-788*t**13-332*t**12-72*t**11-1108*t**10+709*t**9-600*t**8+328*t**7+512*t**6-168*t**5+484*t**4)/(1+t**17-2*t**16+2*t**15-t**14-2*t**13+4*t**12-5*t**11+4*t**10-t**9-t**8+4*t**7-5*t**6+4*t**5-2*t**4-t**3+2*t**2-2*t)', '6': '(-149*t**19+5*t**21-22*t**22+74*t**23+127*t**24+23*t**25+57*t**26+56*t**27-28*t**28-12*t**13-58*t**14-58*t**15-53*t**16-58*t**17-74*t**18-48*t**20-7*t**9+34*t**10-76*t**11+159*t**7-128*t**12+73*t**6+56*t**5+47*t**8+93*t**4)/(1+t**25-t**24+t**22-2*t**21+t**19-t**18+2*t**16-t**15-t**10+2*t**9-t**7+t**6-2*t**4+t**3-t)', 'author': 'Fabien Clery', 'description': 'Hilbert-Poincare series for the sum of the canonical $S_6$-submodule $M_k^p$ ($k\\ge 4$) of $M_{k,98}(Gamma_0(2))$ corresponding to the irreducible $S_6$ representation defined by the partition $p$. The action of $S_6$ is given by identifying $S_6$ with the quotient $SP(4,Z)/Gamma(2)$ and letting act $SP(4,Z)$ in the natural way.', 'group': 'Gamma(2)', 'id': 14, 'note': ['if $j\\\\ge2 then only $k\\\\ge 4$'], 'space': 'total', 'sym_power': 98, 'title': 'Hilbert Poincare series'}