Query:
/api/smf_dims/?_offset=0
{'111111': '(-39*t**16-41*t**17-44*t**18-85*t**19-71*t**20-41*t**21+10*t**22+34*t**23+68*t**24+66*t**25+50*t**26+16*t**27+7*t**28-9*t**29-22*t**30+37*t**4+56*t**5+71*t**6+90*t**7+75*t**8+46*t**9-6*t**10-29*t**11-63*t**12-60*t**13-45*t**14-10*t**15)/(1+t**27-t**23-t**22-t**21+t**18+t**17+t**16-t**15-t**12+t**11+t**10+t**9-t**6-t**5-t**4)', '21111': '(-81*t**22+66*t**21-16*t**20+122*t**19+199*t**18+31*t**17+267*t**16-173*t**15-22*t**14-275*t**13-447*t**12-98*t**11-338*t**10+115*t**9+50*t**8+161*t**7+260*t**6+76*t**5+164*t**4)/(1+t**19-t**18+t**17-t**16-t**15+t**14-3*t**13+3*t**12-2*t**11+2*t**10+2*t**9-2*t**8+3*t**7-3*t**6+t**5-t**4-t**3+t**2-t)', '2211': '(-122*t**18+234*t**16+213*t**15+440*t**14+291*t**13-321*t**12-531*t**11-612*t**10-686*t**9-157*t**8+333*t**7+309*t**6+411*t**5+259*t**4)/(1+t**15-t**13-2*t**11-t**10+2*t**9+t**8+t**7+2*t**6-t**5-2*t**4-t**2)', '222': '(-65*t**26+59*t**25+68*t**24+54*t**23+115*t**22-10*t**21+30*t**20-75*t**19-96*t**18-71*t**17-143*t**16+3*t**15+72*t**14-55*t**13-61*t**12-51*t**11-108*t**10+13*t**9-23*t**8+78*t**7+103*t**6+74*t**5+150*t**4)/(1+t**23-t**22-t**19+t**18-t**17+t**16+t**13-t**12-t**11+t**10+t**7-t**6+t**5-t**4-t)', '3111': '(-125*t**26+135*t**25+125*t**24+115*t**23+220*t**22-40*t**21+66*t**20-171*t**19-174*t**18-151*t**17-268*t**16+8*t**15+137*t**14-127*t**13-113*t**12-107*t**11-208*t**10+49*t**9-54*t**8+179*t**7+186*t**6+160*t**5+280*t**4)/(1+t**23-t**22-t**19+t**18-t**17+t**16+t**13-t**12-t**11+t**10+t**7-t**6+t**5-t**4-t)', '321': '(-167*t**22+45*t**21+410*t**20+376*t**19+340*t**18+469*t**17+551*t**16-270*t**15-1009*t**14-932*t**13-849*t**12-1098*t**11-760*t**10+265*t**9+641*t**8+596*t**7+550*t**6+669*t**5+417*t**4)/(1+t**19-t**17-t**14-2*t**13+t**12+2*t**11+2*t**8+t**7-2*t**6-t**5-t**2)', '33': '(-46*t**26+66*t**25+65*t**24+51*t**23+99*t**22-25*t**21+26*t**20-95*t**19-81*t**18-80*t**17-115*t**16+6*t**15+50*t**14-60*t**13-61*t**12-45*t**11-95*t**10+31*t**9-22*t**8+102*t**7+85*t**6+86*t**5+119*t**4)/(1+t**23-t**22-t**19+t**18-t**17+t**16+t**13-t**12-t**11+t**10+t**7-t**6+t**5-t**4-t)', '411': '(-90*t**26+140*t**25+125*t**24+110*t**23+185*t**22-50*t**21+40*t**20-185*t**19-165*t**18-155*t**17-225*t**16+11*t**15+100*t**14-130*t**13-115*t**12-99*t**11-175*t**10+60*t**9-30*t**8+195*t**7+175*t**6+165*t**5+235*t**4)/(1+t**23-t**22-t**19+t**18-t**17+t**16+t**13-t**12-t**11+t**10+t**7-t**6+t**5-t**4-t)', '42': '(-73*t**18+42*t**17+234*t**16+213*t**15+328*t**14+158*t**13-363*t**12-531*t**11-548*t**10-533*t**9-73*t**8+333*t**7+309*t**6+347*t**5+218*t**4)/(1+t**15-t**13-2*t**11-t**10+2*t**9+t**8+t**7+2*t**6-t**5-2*t**4-t**2)', '51': '(-30*t**22+69*t**21+37*t**20+118*t**19+147*t**18+19*t**17+115*t**16-188*t**15-119*t**14-276*t**13-334*t**12-82*t**11-180*t**10+129*t**9+92*t**8+168*t**7+197*t**6+74*t**5+105*t**4)/(1+t**19-t**18+t**17-t**16-t**15+t**14-3*t**13+3*t**12-2*t**11+2*t**10+2*t**9-2*t**8+3*t**7-3*t**6+t**5-t**4-t**3+t**2-t)', '6': '(-41*t**16-36*t**17-46*t**18-64*t**19-69*t**20-50*t**21-25*t**22+4*t**23+32*t**24+48*t**25+45*t**26+30*t**27+23*t**28+6*t**29-5*t**30+23*t**4+34*t**5+57*t**6+69*t**7+75*t**8+55*t**9+31*t**10+t**11-26*t**12-44*t**13-40*t**14-26*t**15)/(1+t**27-t**23-t**22-t**21+t**18+t**17+t**16-t**15-t**12+t**11+t**10+t**9-t**6-t**5-t**4)', 'author': 'Fabien Clery', 'description': 'Hilbert-Poincare series for the sum of the canonical $S_6$-submodule $M_k^p$ ($k\\ge 4$) of $M_{k,60}(Gamma_0(2))$ corresponding to the irreducible $S_6$ representation defined by the partition $p$. The action of $S_6$ is given by identifying $S_6$ with the quotient $SP(4,Z)/Gamma(2)$ and letting act $SP(4,Z)$ in the natural way.', 'group': 'Gamma(2)', 'id': 11, 'note': ['if $j\\\\ge2 then only $k\\\\ge 4$'], 'space': 'total', 'sym_power': 60, 'title': 'Hilbert Poincare series'}