Query:
/api/smf_dims/?_offset=0
{'111111': '(-4*t**11-14*t**12-12*t**13-9*t**14+2*t**15-8*t**16-8*t**17-9*t**18-21*t**19-19*t**20-11*t**21+3*t**22+7*t**23+17*t**24+16*t**25+12*t**26+2*t**27+t**28-4*t**29-7*t**30+10*t**4+16*t**5+19*t**6+24*t**7+21*t**8+14*t**9-t**10)/(1+t**27-t**23-t**22-t**21+t**18+t**17+t**16-t**15-t**12+t**11+t**10+t**9-t**6-t**5-t**4)', '21111': '(-20*t**22+14*t**21-5*t**20+25*t**19+46*t**18+2*t**17+60*t**16-41*t**15-10*t**14-57*t**13-109*t**12-14*t**11-75*t**10+31*t**9+23*t**8+36*t**7+71*t**6+17*t**5+43*t**4)/(1+t**19-t**18+t**17-t**16-t**15+t**14-3*t**13+3*t**12-2*t**11+2*t**10+2*t**9-2*t**8+3*t**7-3*t**6+t**5-t**4-t**3+t**2-t)', '2211': '(-27*t**18+51*t**16+44*t**15+93*t**14+56*t**13-81*t**12-124*t**11-137*t**10-147*t**9-22*t**8+89*t**7+80*t**6+101*t**5+61*t**4)/(1+t**15-t**13-2*t**11-t**10+2*t**9+t**8+t**7+2*t**6-t**5-2*t**4-t**2)', '222': '(-15*t**26+10*t**25+17*t**24+10*t**23+24*t**22-14*t**19-27*t**18-15*t**17-34*t**16+t**15+20*t**14-8*t**13-12*t**12-9*t**11-19*t**10+t**9+5*t**8+15*t**7+32*t**6+16*t**5+39*t**4)/(1+t**23-t**22-t**19+t**18-t**17+t**16+t**13-t**12-t**11+t**10+t**7-t**6+t**5-t**4-t)', '3111': '(-27*t**26+30*t**25+27*t**24+24*t**23+42*t**22-12*t**21+4*t**20-40*t**19-44*t**18-34*t**17-58*t**16+4*t**15+35*t**14-26*t**13-19*t**12-20*t**11-34*t**10+17*t**9+4*t**8+44*t**7+52*t**6+39*t**5+66*t**4)/(1+t**23-t**22-t**19+t**18-t**17+t**16+t**13-t**12-t**11+t**10+t**7-t**6+t**5-t**4-t)', '321': '(-31*t**22+15*t**21+88*t**20+77*t**19+65*t**18+82*t**17+84*t**16-90*t**15-241*t**14-214*t**13-183*t**12-212*t**11-122*t**10+99*t**9+179*t**8+161*t**7+143*t**6+154*t**5+94*t**4)/(1+t**19-t**17-t**14-2*t**13+t**12+2*t**11+2*t**8+t**7-2*t**6-t**5-t**2)', '33': '(-8*t**26+14*t**25+15*t**24+8*t**23+19*t**22-9*t**21+2*t**20-25*t**19-19*t**18-19*t**17-23*t**16+4*t**15+10*t**14-10*t**13-13*t**12-4*t**11-17*t**10+13*t**9+30*t**7+21*t**6+23*t**5+25*t**4)/(1+t**23-t**22-t**19+t**18-t**17+t**16+t**13-t**12-t**11+t**10+t**7-t**6+t**5-t**4-t)', '411': '(-15*t**26+33*t**25+27*t**24+21*t**23+30*t**22-18*t**21-3*t**20-48*t**19-39*t**18-36*t**17-42*t**16+7*t**15+21*t**14-27*t**13-21*t**12-14*t**11-24*t**10+24*t**9+9*t**8+54*t**7+45*t**6+42*t**5+48*t**4)/(1+t**23-t**22-t**19+t**18-t**17+t**16+t**13-t**12-t**11+t**10+t**7-t**6+t**5-t**4-t)', '42': '(-11*t**18+12*t**17+51*t**16+44*t**15+53*t**14+16*t**13-93*t**12-124*t**11-112*t**10-96*t**9+2*t**8+89*t**7+80*t**6+76*t**5+50*t**4)/(1+t**15-t**13-2*t**11-t**10+2*t**9+t**8+t**7+2*t**6-t**5-2*t**4-t**2)', '51': '(-3*t**22+16*t**21+13*t**20+23*t**19+28*t**18-5*t**17+9*t**16-50*t**15-41*t**14-58*t**13-68*t**12-4*t**11-21*t**10+40*t**9+34*t**8+41*t**7+46*t**6+16*t**5+21*t**4)/(1+t**19-t**18+t**17-t**16-t**15+t**14-3*t**13+3*t**12-2*t**11+2*t**10+2*t**9-2*t**8+3*t**7-3*t**6+t**5-t**4-t**3+t**2-t)', '6': '(5*t**11-7*t**13-6*t**14-4*t**15-9*t**16-6*t**17-10*t**18-13*t**19-17*t**20-12*t**21-9*t**22-2*t**23+4*t**24+9*t**25+9*t**26+6*t**27+6*t**28+t**29-t**30+6*t**4+7*t**5+15*t**6+16*t**7+21*t**8+15*t**9+13*t**10)/(1+t**27-t**23-t**22-t**21+t**18+t**17+t**16-t**15-t**12+t**11+t**10+t**9-t**6-t**5-t**4)', 'author': 'Fabien Clery', 'description': 'Hilbert-Poincare series for the sum of the canonical $S_6$-submodule $M_k^p$ ($k\\ge 4$) of $M_{k,36}(Gamma_0(2))$ corresponding to the irreducible $S_6$ representation defined by the partition $p$. The action of $S_6$ is given by identifying $S_6$ with the quotient $SP(4,Z)/Gamma(2)$ and letting act $SP(4,Z)$ in the natural way.', 'group': 'Gamma(2)', 'id': 1, 'note': ['if $j\\\\ge2 then only $k\\\\ge 4$'], 'space': 'total', 'sym_power': 36, 'title': 'Hilbert Poincare series'}