Formats: - HTML - YAML - JSON - 2025-12-16T03:29:55.636834
Query: /api/smf_dims/?_offset=0
Show schema

{'111111': '(-3*t**28+2*t**27+t**26-2*t**25+6*t**24+t**23-t**22+2*t**21-t**20-6*t**19-2*t**17-t**15-t**14+3*t**13-6*t**12+2*t**10-t**9+t**8+8*t**7+3*t**5+4*t**4)/(1+t**25-t**24+t**22-2*t**21+t**19-t**18+2*t**16-t**15-t**10+2*t**9-t**7+t**6-2*t**4+t**3-t)', '21111': '(-9*t**20+15*t**19-9*t**18+4*t**17+23*t**16-27*t**15+27*t**14-17*t**13-15*t**12+9*t**11-37*t**10+24*t**9-13*t**8+3*t**7+24*t**6-12*t**5+19*t**4)/(1+t**17-2*t**16+2*t**15-t**14-2*t**13+4*t**12-5*t**11+4*t**10-t**9-t**8+4*t**7-5*t**6+4*t**5-2*t**4-t**3+2*t**2-2*t)', '2211': '(-11*t**18+19*t**16+16*t**15+36*t**14+19*t**13-34*t**12-49*t**11-54*t**10-56*t**9-3*t**8+40*t**7+35*t**6+44*t**5+25*t**4)/(1+t**15-t**13-2*t**11-t**10+2*t**9+t**8+t**7+2*t**6-t**5-2*t**4-t**2)', '222': '(-4*t**24+7*t**23+2*t**22-4*t**21+8*t**20-4*t**19-6*t**18+5*t**17-11*t**16+2*t**15-3*t**14+t**13+10*t**12-14*t**11+4*t**10+5*t**9-11*t**8+6*t**7+11*t**6-11*t**5+16*t**4)/(1+t**21-2*t**20+t**19+t**18-3*t**17+3*t**16-t**15-t**14+2*t**13-t**12-t**9+2*t**8-t**7-t**6+3*t**5-3*t**4+t**3+t**2-2*t)', '3111': '(-9*t**24+19*t**23+t**22-12*t**21+25*t**20-19*t**19-8*t**18+12*t**17-24*t**16+t**15+t**14+t**13+13*t**12-21*t**11+3*t**10+13*t**9-24*t**8+20*t**7+13*t**6-16*t**5+29*t**4)/(1+t**21-2*t**20+t**19+t**18-3*t**17+3*t**16-t**15-t**14+2*t**13-t**12-t**9+2*t**8-t**7-t**6+3*t**5-3*t**4+t**3+t**2-2*t)', '321': '(-11*t**20+17*t**19+28*t**18-18*t**17+10*t**16+35*t**15-22*t**14-57*t**13-19*t**12-5*t**11-43*t**10-25*t**9+37*t**8+43*t**7+3*t**6+26*t**5+37*t**4)/(1+t**17-t**16-t**15+2*t**14-t**13-2*t**12+t**11+2*t**10-t**9-t**8+2*t**7+t**6-2*t**5-t**4+2*t**3-t**2-t)', '33': '(-2*t**24+8*t**23-2*t**22-2*t**21+9*t**20-13*t**19+6*t**18-7*t**17-5*t**16+5*t**15-8*t**14+6*t**13+5*t**12-13*t**11+5*t**10+8*t**9-17*t**8+18*t**7-2*t**6+t**5+9*t**4)/(1+t**21-2*t**20+t**19+t**18-3*t**17+3*t**16-t**15-t**14+2*t**13-t**12-t**9+2*t**8-t**7-t**6+3*t**5-3*t**4+t**3+t**2-2*t)', '411': '(-4*t**24+16*t**23-t**22-9*t**21+19*t**20-20*t**19-3*t**18+3*t**17-17*t**16+3*t**15-t**14+3*t**13+7*t**12-18*t**11+4*t**10+12*t**9-20*t**8+23*t**7+5*t**6-3*t**5+19*t**4)/(1+t**21-2*t**20+t**19+t**18-3*t**17+3*t**16-t**15-t**14+2*t**13-t**12-t**9+2*t**8-t**7-t**6+3*t**5-3*t**4+t**3+t**2-2*t)', '42': '(-2*t**18+6*t**17+19*t**16+16*t**15+12*t**14-2*t**13-40*t**12-50*t**11-38*t**10-26*t**9+9*t**8+40*t**7+36*t**6+28*t**5+19*t**4)/(1+t**15-t**13-2*t**11-t**10+2*t**9+t**8+t**7+2*t**6-t**5-2*t**4-t**2)', '51': '(-t**20+8*t**19-t**18+t**17+10*t**16-16*t**15+5*t**14-11*t**13-14*t**12+3*t**11-13*t**10+13*t**9+7*t**7+11*t**6+7*t**4)/(1+t**17-2*t**16+2*t**15-t**14-2*t**13+4*t**12-5*t**11+4*t**10-t**9-t**8+4*t**7-5*t**6+4*t**5-2*t**4-t**3+2*t**2-2*t)', '6': '(t**27+t**26+2*t**25-3*t**21-4*t**20+t**19-4*t**18-2*t**17+4*t**16-3*t**15-2*t**14+3*t**13-t**12-2*t**11+6*t**10+t**9+3*t**8+3*t**7+3*t**6+2*t**4)/(1+t**25-t**24+t**22-2*t**21+t**19-t**18+2*t**16-t**15-t**10+2*t**9-t**7+t**6-2*t**4+t**3-t)', 'author': 'Fabien Clery', 'description': 'Hilbert-Poincare series for the sum of the canonical $S_6$-submodule $M_k^p$ ($k\\ge 4$) of $M_{k,26}(Gamma_0(2))$ corresponding to the irreducible $S_6$ representation defined by the partition $p$. The action of $S_6$ is given by identifying $S_6$ with the quotient $SP(4,Z)/Gamma(2)$ and letting act $SP(4,Z)$ in the natural way.', 'group': 'Gamma(2)', 'id': 0, 'note': ['if $j\\\\ge2 then only $k\\\\ge 4$'], 'space': 'total', 'sym_power': 26, 'title': 'Hilbert Poincare series'}