Formats: - HTML - YAML - JSON - 2026-02-22T04:49:28.149872
Query: /api/hmf_hecke/?_offset=0
Show schema

{'AL_eigenvalues': [['[79,79,-w^3 + w^2 + 4*w - 1]', 1]], 'hecke_eigenvalues': ['e', '-7/38*e^4 + 15/19*e^3 + 47/19*e^2 - 124/19*e - 17/2', '17/38*e^4 - 31/19*e^3 - 163/19*e^2 + 312/19*e + 91/2', '5/19*e^4 - 16/19*e^3 - 116/19*e^2 + 188/19*e + 30', '4/19*e^4 - 9/19*e^3 - 108/19*e^2 + 101/19*e + 32', '-7/38*e^4 + 15/19*e^3 + 66/19*e^2 - 162/19*e - 37/2', '-17/38*e^4 + 31/19*e^3 + 163/19*e^2 - 312/19*e - 83/2', '3/19*e^4 - 21/19*e^3 - 24/19*e^2 + 204/19*e + 9', '-17/38*e^4 + 31/19*e^3 + 163/19*e^2 - 312/19*e - 83/2', '-17/38*e^4 + 31/19*e^3 + 163/19*e^2 - 312/19*e - 83/2', '3/38*e^4 - 1/19*e^3 - 31/19*e^2 - 50/19*e + 17/2', '7/38*e^4 - 15/19*e^3 - 47/19*e^2 + 124/19*e + 25/2', '12/19*e^4 - 46/19*e^3 - 229/19*e^2 + 436/19*e + 68', '5/19*e^4 - 16/19*e^3 - 116/19*e^2 + 226/19*e + 37', '-21/38*e^4 + 45/19*e^3 + 160/19*e^2 - 410/19*e - 71/2', -1, '-10/19*e^4 + 32/19*e^3 + 232/19*e^2 - 338/19*e - 74', '-2/19*e^4 + 14/19*e^3 + 16/19*e^2 - 174/19*e', '-5/38*e^4 + 8/19*e^3 + 39/19*e^2 - 94/19*e - 7/2', '-5/19*e^4 + 16/19*e^3 + 116/19*e^2 - 188/19*e - 33', '4/19*e^4 - 9/19*e^3 - 108/19*e^2 + 101/19*e + 32', '15/19*e^4 - 48/19*e^3 - 348/19*e^2 + 564/19*e + 101', '12/19*e^4 - 46/19*e^3 - 210/19*e^2 + 474/19*e + 54', '-1/38*e^4 - 6/19*e^3 + 23/19*e^2 + 118/19*e - 7/2', '-5/19*e^4 + 16/19*e^3 + 116/19*e^2 - 188/19*e - 33', '-10/19*e^4 + 32/19*e^3 + 232/19*e^2 - 376/19*e - 70', '-7/19*e^4 + 30/19*e^3 + 94/19*e^2 - 248/19*e - 13', '2*e^2 - 6*e - 20', '-41/38*e^4 + 77/19*e^3 + 411/19*e^2 - 843/19*e - 215/2', '-1/38*e^4 - 6/19*e^3 + 61/19*e^2 - 34/19*e - 47/2', '14/19*e^4 - 41/19*e^3 - 340/19*e^2 + 477/19*e + 106', '15/19*e^4 - 67/19*e^3 - 234/19*e^2 + 678/19*e + 63', '-12/19*e^4 + 46/19*e^3 + 210/19*e^2 - 398/19*e - 57', '5/19*e^4 - 16/19*e^3 - 78/19*e^2 + 74/19*e + 14', '25/38*e^4 - 59/19*e^3 - 195/19*e^2 + 584/19*e + 111/2', '-5/38*e^4 + 8/19*e^3 + 77/19*e^2 - 113/19*e - 67/2', '-17/38*e^4 + 31/19*e^3 + 163/19*e^2 - 274/19*e - 83/2', '-11/38*e^4 + 29/19*e^3 + 63/19*e^2 - 298/19*e - 17/2', '-9/38*e^4 + 3/19*e^3 + 131/19*e^2 - 40/19*e - 79/2', '27/38*e^4 - 47/19*e^3 - 279/19*e^2 + 538/19*e + 165/2', '-1/19*e^4 - 12/19*e^3 + 65/19*e^2 + 160/19*e - 21', '-2/19*e^4 - 5/19*e^3 + 92/19*e^2 + 54/19*e - 32', '7/19*e^4 - 30/19*e^3 - 94/19*e^2 + 286/19*e + 10', '18/19*e^4 - 69/19*e^3 - 372/19*e^2 + 711/19*e + 114', '-17/19*e^4 + 62/19*e^3 + 364/19*e^2 - 624/19*e - 121', '51/38*e^4 - 93/19*e^3 - 470/19*e^2 + 898/19*e + 257/2', '-5/19*e^4 + 16/19*e^3 + 116/19*e^2 - 112/19*e - 39', '-21/38*e^4 + 45/19*e^3 + 217/19*e^2 - 543/19*e - 119/2', '-12/19*e^4 + 46/19*e^3 + 248/19*e^2 - 512/19*e - 76', '25/38*e^4 - 59/19*e^3 - 176/19*e^2 + 508/19*e + 71/2', '25/19*e^4 - 80/19*e^3 - 542/19*e^2 + 902/19*e + 151', '5/19*e^4 - 16/19*e^3 - 154/19*e^2 + 226/19*e + 53', '-2*e^2 + 2*e + 30', '1/38*e^4 - 13/19*e^3 + 15/19*e^2 + 186/19*e - 11/2', '-27/38*e^4 + 47/19*e^3 + 279/19*e^2 - 557/19*e - 129/2', '-2/19*e^4 + 14/19*e^3 + 16/19*e^2 - 98/19*e - 16', '-1/19*e^4 - 12/19*e^3 + 46/19*e^2 + 160/19*e + 3', '-31/38*e^4 + 61/19*e^3 + 295/19*e^2 - 636/19*e - 175/2', '-12/19*e^4 + 46/19*e^3 + 248/19*e^2 - 512/19*e - 72', '23/38*e^4 - 33/19*e^3 - 225/19*e^2 + 288/19*e + 99/2', '-10/19*e^4 + 32/19*e^3 + 232/19*e^2 - 224/19*e - 80', '-1/19*e^4 + 26/19*e^3 - 106/19*e^2 - 125/19*e + 51', '-7/19*e^4 + 11/19*e^3 + 170/19*e^2 - 134/19*e - 39', '-15/38*e^4 + 5/19*e^3 + 231/19*e^2 - 92/19*e - 121/2', '12/19*e^4 - 46/19*e^3 - 191/19*e^2 + 398/19*e + 38', '-27/38*e^4 + 47/19*e^3 + 241/19*e^2 - 424/19*e - 113/2', '-3/38*e^4 + 1/19*e^3 - 7/19*e^2 + 88/19*e + 51/2', '7/38*e^4 - 15/19*e^3 - 47/19*e^2 + 10/19*e + 37/2', '-29/38*e^4 + 35/19*e^3 + 363/19*e^2 - 416/19*e - 211/2', '-69/38*e^4 + 137/19*e^3 + 675/19*e^2 - 1510/19*e - 347/2', '-21/19*e^4 + 90/19*e^3 + 358/19*e^2 - 915/19*e - 79', '-33/38*e^4 + 49/19*e^3 + 417/19*e^2 - 514/19*e - 279/2', '31/38*e^4 - 42/19*e^3 - 371/19*e^2 + 465/19*e + 201/2', '-9/38*e^4 + 3/19*e^3 + 169/19*e^2 - 154/19*e - 117/2', '-10/19*e^4 + 32/19*e^3 + 270/19*e^2 - 376/19*e - 108', '-35/38*e^4 + 75/19*e^3 + 273/19*e^2 - 639/19*e - 121/2', '-e^3 + 4*e^2 + 9*e - 24', '27/19*e^4 - 94/19*e^3 - 596/19*e^2 + 1038/19*e + 171', '-41/38*e^4 + 77/19*e^3 + 373/19*e^2 - 805/19*e - 155/2', '25/38*e^4 - 59/19*e^3 - 157/19*e^2 + 432/19*e + 65/2', '2/19*e^4 + 5/19*e^3 - 54/19*e^2 - 73/19*e', '-16/19*e^4 + 74/19*e^3 + 242/19*e^2 - 670/19*e - 62', '1/19*e^4 - 26/19*e^3 + 106/19*e^2 + 182/19*e - 47', '3/19*e^4 - 2/19*e^3 - 138/19*e^2 + 52/19*e + 49', '45/38*e^4 - 110/19*e^3 - 351/19*e^2 + 1074/19*e + 199/2', '25/38*e^4 - 59/19*e^3 - 233/19*e^2 + 774/19*e + 103/2', '-2/19*e^4 + 14/19*e^3 + 73/19*e^2 - 326/19*e - 26', '61/38*e^4 - 109/19*e^3 - 605/19*e^2 + 1086/19*e + 359/2', '-13/38*e^4 + 17/19*e^3 + 109/19*e^2 - 24/19*e - 59/2', '-7/38*e^4 + 34/19*e^3 + 9/19*e^2 - 409/19*e + 19/2', '-49/38*e^4 + 67/19*e^3 + 595/19*e^2 - 792/19*e - 351/2', '-61/38*e^4 + 109/19*e^3 + 567/19*e^2 - 1181/19*e - 251/2', '-e^4 + 4*e^3 + 18*e^2 - 40*e - 93', '-1/19*e^4 - 12/19*e^3 + 84/19*e^2 + 198/19*e - 27', '-7/19*e^4 + 30/19*e^3 + 132/19*e^2 - 438/19*e - 27', '-29/19*e^4 + 108/19*e^3 + 574/19*e^2 - 1060/19*e - 161', '41/38*e^4 - 77/19*e^3 - 335/19*e^2 + 691/19*e + 179/2', '-9/19*e^4 + 6/19*e^3 + 338/19*e^2 - 232/19*e - 117', '-5/38*e^4 + 27/19*e^3 - 37/19*e^2 - 208/19*e + 35/2', '41/19*e^4 - 154/19*e^3 - 784/19*e^2 + 1686/19*e + 199', '-17/38*e^4 + 12/19*e^3 + 239/19*e^2 - 84/19*e - 159/2', '23/38*e^4 - 52/19*e^3 - 149/19*e^2 + 592/19*e + 37/2', '-11/19*e^4 + 58/19*e^3 + 126/19*e^2 - 558/19*e - 31', '-23/38*e^4 + 33/19*e^3 + 263/19*e^2 - 364/19*e - 159/2', '-37/19*e^4 + 145/19*e^3 + 714/19*e^2 - 1471/19*e - 191', '47/38*e^4 - 79/19*e^3 - 511/19*e^2 + 819/19*e + 329/2', '-39/38*e^4 + 89/19*e^3 + 327/19*e^2 - 908/19*e - 195/2', '39/19*e^4 - 140/19*e^3 - 806/19*e^2 + 1588/19*e + 213', '35/38*e^4 - 75/19*e^3 - 368/19*e^2 + 924/19*e + 221/2', '-43/38*e^4 + 65/19*e^3 + 495/19*e^2 - 759/19*e - 249/2', '23/19*e^4 - 66/19*e^3 - 564/19*e^2 + 690/19*e + 169', '7/19*e^4 - 30/19*e^3 - 170/19*e^2 + 324/19*e + 61', '5/38*e^4 - 8/19*e^3 - 77/19*e^2 + 18/19*e + 63/2', '11/19*e^4 - 20/19*e^3 - 316/19*e^2 + 216/19*e + 97', '-17/19*e^4 + 62/19*e^3 + 364/19*e^2 - 586/19*e - 123', '-21/19*e^4 + 90/19*e^3 + 358/19*e^2 - 1010/19*e - 77', '25/19*e^4 - 80/19*e^3 - 504/19*e^2 + 788/19*e + 119', '21/38*e^4 - 45/19*e^3 - 160/19*e^2 + 486/19*e + 71/2', '1/38*e^4 - 13/19*e^3 - 42/19*e^2 + 300/19*e + 43/2', '-22/19*e^4 + 97/19*e^3 + 404/19*e^2 - 1059/19*e - 98', '37/38*e^4 - 82/19*e^3 - 281/19*e^2 + 650/19*e + 139/2', '-24/19*e^4 + 92/19*e^3 + 458/19*e^2 - 1024/19*e - 104', '1/19*e^4 - 7/19*e^3 + 30/19*e^2 - 27/19*e - 5', '-22/19*e^4 + 78/19*e^3 + 518/19*e^2 - 888/19*e - 168', '33/19*e^4 - 98/19*e^3 - 720/19*e^2 + 1104/19*e + 183', '-1/2*e^4 + 3*e^3 + 7*e^2 - 32*e - 115/2', '85/38*e^4 - 155/19*e^3 - 834/19*e^2 + 1598/19*e + 475/2', '5/2*e^4 - 9*e^3 - 49*e^2 + 94*e + 541/2', '5/38*e^4 + 11/19*e^3 - 39/19*e^2 - 286/19*e - 13/2', '5/38*e^4 + 11/19*e^3 - 77/19*e^2 - 324/19*e + 67/2', '-41/38*e^4 + 96/19*e^3 + 221/19*e^2 - 805/19*e - 63/2', '67/38*e^4 - 111/19*e^3 - 743/19*e^2 + 1176/19*e + 441/2', '69/38*e^4 - 118/19*e^3 - 675/19*e^2 + 1111/19*e + 375/2', '27/19*e^4 - 75/19*e^3 - 672/19*e^2 + 905/19*e + 191', '23/19*e^4 - 66/19*e^3 - 564/19*e^2 + 842/19*e + 159', '-18/19*e^4 + 50/19*e^3 + 524/19*e^2 - 692/19*e - 190', '28/19*e^4 - 120/19*e^3 - 414/19*e^2 + 1030/19*e + 86', '36/19*e^4 - 138/19*e^3 - 668/19*e^2 + 1460/19*e + 196', '17/19*e^4 - 62/19*e^3 - 326/19*e^2 + 586/19*e + 95', '5/38*e^4 - 27/19*e^3 + 18/19*e^2 + 170/19*e + 11/2', '-1/2*e^4 + 3*e^3 - e^2 - 17*e + 99/2', '-47/38*e^4 + 117/19*e^3 + 340/19*e^2 - 1218/19*e - 181/2', '-17/19*e^4 + 62/19*e^3 + 326/19*e^2 - 624/19*e - 109', '29/19*e^4 - 108/19*e^3 - 460/19*e^2 + 946/19*e + 95', '-9/38*e^4 + 3/19*e^3 + 245/19*e^2 - 173/19*e - 199/2', '-55/38*e^4 + 107/19*e^3 + 486/19*e^2 - 1110/19*e - 273/2', '12/19*e^4 - 46/19*e^3 - 324/19*e^2 + 702/19*e + 106', '-10/19*e^4 + 70/19*e^3 + 42/19*e^2 - 604/19*e + 16', '-e^4 + 4*e^3 + 16*e^2 - 42*e - 73', '23/38*e^4 - 14/19*e^3 - 339/19*e^2 + 98/19*e + 193/2', '55/38*e^4 - 145/19*e^3 - 372/19*e^2 + 1376/19*e + 201/2', '34/19*e^4 - 124/19*e^3 - 671/19*e^2 + 1248/19*e + 186', '-53/38*e^4 + 100/19*e^3 + 497/19*e^2 - 1061/19*e - 283/2', '49/38*e^4 - 86/19*e^3 - 519/19*e^2 + 963/19*e + 275/2', '65/38*e^4 - 123/19*e^3 - 621/19*e^2 + 1488/19*e + 315/2', '25/38*e^4 - 59/19*e^3 - 233/19*e^2 + 546/19*e + 147/2', '-63/38*e^4 + 97/19*e^3 + 727/19*e^2 - 1078/19*e - 453/2', '21/38*e^4 - 64/19*e^3 - 103/19*e^2 + 562/19*e + 27/2', '-54/19*e^4 + 226/19*e^3 + 926/19*e^2 - 2190/19*e - 250', '13/38*e^4 - 36/19*e^3 - 33/19*e^2 + 328/19*e - 29/2'], 'hecke_polynomial': 'x^5 - 7*x^4 - 8*x^3 + 106*x^2 - 19*x - 361', 'id': 363607, 'label': '6.6.371293.1-79.3-e'}