Query:
/api/gps_groups/?_offset=0
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '32.51', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 3, 'aut_exponent': 8, 'aut_gen_orders': [4, 4, 8, 4, 2, 4], 'aut_gens': [[1, 2, 4, 8, 16, 64], [13, 10, 36, 136, 80, 96], [137, 130, 14, 8, 212, 226], [39, 34, 174, 136, 54, 98], [37, 2, 36, 136, 216, 72], [41, 138, 4, 8, 184, 104], [13, 2, 164, 136, 112, 104]], 'aut_group': None, 'aut_hash': 3543113139147162601, 'aut_nilpotency_class': 4, 'aut_nilpotent': True, 'aut_order': 262144, 'aut_permdeg': 48, 'aut_perms': [10125608149357834087786787837263927135294011410880419837515636, 4476121807736157849370587672641079242474340191902329310572798, 10325747835271930861775008239730240390388010669397547015558001, 5470822308334020599919499122281503567907676262790285642807313, 2078219406896991183758015250565587669518325693914118141163730, 10339907862070628219009650321469034129857550222196872351698643], 'aut_phi_ratio': 2048.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 1, 2, 1], [2, 1, 4, 1], [2, 2, 4, 1], [2, 4, 2, 2], [2, 4, 4, 1], [2, 4, 8, 1], [2, 8, 2, 1], [4, 4, 4, 1], [4, 8, 2, 1], [4, 8, 4, 2], [4, 8, 8, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_2^{12}.C_2^5.C_2', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 2, 'autcent_group': None, 'autcent_hash': 3946057693156513511, 'autcent_nilpotent': True, 'autcent_order': 32768, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^{15}', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 4, 'autcentquo_group': '8.3', 'autcentquo_hash': 3, 'autcentquo_nilpotent': True, 'autcentquo_order': 8, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'D_4', 'cc_stats': [[1, 1, 1], [2, 1, 7], [2, 2, 4], [2, 4, 16], [2, 8, 2], [4, 4, 4], [4, 8, 18]], 'center_label': '8.5', 'center_order': 8, 'central_product': False, 'central_quotient': '32.51', 'commutator_count': 1, 'commutator_label': '8.5', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1'], 'composition_length': 8, 'conjugacy_classes_known': True, 'counter': 29702, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 7], [2, 2, 1, 4], [2, 4, 1, 16], [2, 8, 1, 2], [4, 4, 1, 4], [4, 8, 1, 18]], 'element_repr_type': 'PC', 'elementary': 2, 'eulerian_function': 1249920, 'exponent': 4, 'exponents_of_order': [8], 'factors_of_aut_order': [2], 'factors_of_order': [2], 'faithful_reps': [], 'familial': False, 'frattini_label': '8.5', 'frattini_quotient': '32.51', 'hash': 29702, 'hyperelementary': 2, 'id': 75748, 'inner_abelian': True, 'inner_cyclic': False, 'inner_exponent': 2, 'inner_gen_orders': [2, 2, 2, 1, 2, 2], 'inner_gens': [[1, 2, 4, 8, 176, 72], [1, 2, 4, 8, 144, 64], [1, 2, 4, 8, 24, 192], [1, 2, 4, 8, 16, 64], [161, 130, 12, 8, 16, 64], [9, 2, 132, 8, 16, 64]], 'inner_hash': 51, 'inner_nilpotent': True, 'inner_order': 32, 'inner_split': False, 'inner_tex': 'C_2^5', 'inner_used': [1, 2, 3, 5, 6], 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': -1, 'irrep_stats': [[1, 32], [2, 8], [4, 12]], 'label': '256.29702', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': None, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': True, 'name': 'C2^5:C2^3', 'ngens': 5, 'nilpotency_class': 2, 'nilpotent': True, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 15, 'number_characteristic_subgroups': 21, 'number_conjugacy_classes': 52, 'number_divisions': 52, 'number_normal_subgroups': 455, 'number_subgroup_autclasses': 304, 'number_subgroup_classes': 2085, 'number_subgroups': 6079, 'old_label': None, 'order': 256, 'order_factorization_type': 7, 'order_stats': [[1, 1], [2, 95], [4, 160]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': True, 'outer_exponent': 8, 'outer_gen_orders': [4, 4, 8, 4, 2, 4], 'outer_gen_pows': [0, 0, 0, 0, 0, 0], 'outer_gens': [[13, 10, 36, 136, 80, 96], [137, 130, 14, 8, 212, 226], [39, 34, 174, 136, 54, 98], [37, 2, 36, 136, 216, 72], [41, 138, 4, 8, 184, 104], [13, 2, 164, 136, 112, 104]], 'outer_group': None, 'outer_hash': 5400958556047536679, 'outer_nilpotent': True, 'outer_order': 8192, 'outer_permdeg': 128, 'outer_perms': [3133172676045219348285825851773905836753429280809019671862764380047402381809674494068230792255091047520648782297897630841647963171537941539804064372121692061934673899443868789777485406563271143412269512279950358132, 142353231899718321420531998981040015141880251927388122177754788290338727740457034442323425696258982947596301288113373415572622660670175106470988847480225980951034439123947326669376989302088589959479311764017305784, 6193467463556332895888554163778136610461405672938045056402913864758973659875429770428243063626250085174118773764657483540371219401934896285722290835415995584352024582841408659066273576680051233893011006024320843314, 9230039001436846499163838454276804861751279272256206078601679122931602160265704111403861960619325818473684287430026903410268454051470831822788153719825031570202563144649103770154646229164804114056118807028835124239, 12266610259063515524221406722297093328170319545366209670337422126616185221701370795418752422770911331602051185454742436713606327867009848694076967523106952986272923496449026553336260228831277278458006584750259694010, 15303182063274058074616621575878722010385450110814984313220911819622988795873732852889713368712503976718187596539720169434122452229644568005464391469515884263050400106536101928006762409042962760502612281569888025711], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2^6.C_2^5.C_2^2', 'pc_rank': 6, 'perfect': False, 'permutation_degree': 20, 'pgroup': 2, 'primary_abelian_invariants': [2, 2, 2, 2, 2], 'quasisimple': False, 'rank': 5, 'rational': True, 'rational_characters_known': True, 'ratrep_stats': [[1, 32], [2, 8], [4, 12]], 'representations': {'PC': {'code': 10276026275316907127149648, 'gens': [1, 2, 3, 4, 5, 7], 'pres': [8, 2, 2, 2, 2, 2, 2, 2, 2, 7044, 2892, 260, 116, 4038, 2710, 166]}, 'Perm': {'d': 20, 'gens': [135936679847638918, 262581193678014743, 123134628699895680, 122398327071824341, 392327162440029496, 392327162440036537, 392327162527104000, 392327162440012800]}}, 'schur_multiplier': [2, 2, 2, 2, 2, 2, 2, 4], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2, 2, 2, 2], 'solvability_type': 4, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_2^5:C_2^3', 'transitive_degree': 32, 'wreath_data': None, 'wreath_product': False}