Formats: - HTML - YAML - JSON - 2025-11-16T10:43:36.699730
Query: /api/gps_groups/?_offset=0
Show schema

{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '8.2', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 3, 'aut_exponent': 60, 'aut_gen_orders': [2, 2, 2, 12, 10, 2], 'aut_gens': [[1, 2, 24, 48], [17, 10, 504, 72], [481, 482, 24, 48], [1, 482, 24, 48], [9, 2, 240, 360], [265, 170, 504, 48], [745, 242, 24, 528]], 'aut_group': '1920.240396', 'aut_hash': 3782145897709286038, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 1920, 'aut_permdeg': 22, 'aut_perms': [160936486510495179032, 148427319603752338772, 74349588061, 82565894122045943108, 4987764641877018692, 212155771422485324312], 'aut_phi_ratio': 7.5, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 5, 1, 2], [3, 8, 1, 1], [4, 5, 2, 2], [4, 6, 1, 1], [4, 12, 1, 1], [4, 30, 1, 3], [4, 60, 1, 3], [5, 4, 1, 1], [6, 8, 1, 1], [6, 40, 1, 2], [8, 6, 2, 1], [8, 30, 2, 3], [10, 4, 1, 1], [12, 40, 2, 2], [15, 32, 1, 1], [20, 24, 1, 1], [20, 48, 1, 1], [30, 32, 1, 1], [40, 24, 2, 1]], 'aut_supersolvable': False, 'aut_tex': 'C_2^2\\times F_5\\times S_4', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 2, 'autcent_group': '4.2', 'autcent_hash': 2, 'autcent_nilpotent': True, 'autcent_order': 4, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^2', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 60, 'autcentquo_group': '480.1189', 'autcentquo_hash': 1189, 'autcentquo_nilpotent': False, 'autcentquo_order': 480, 'autcentquo_solvable': True, 'autcentquo_supersolvable': False, 'autcentquo_tex': 'F_5\\times S_4', 'cc_stats': [[1, 1, 1], [2, 1, 1], [2, 5, 2], [3, 8, 1], [4, 5, 4], [4, 6, 1], [4, 12, 1], [4, 30, 3], [4, 60, 3], [5, 4, 1], [6, 8, 1], [6, 40, 2], [8, 6, 2], [8, 30, 6], [10, 4, 1], [12, 40, 4], [15, 32, 1], [20, 24, 1], [20, 48, 1], [30, 32, 1], [40, 24, 2]], 'center_label': '2.1', 'center_order': 2, 'central_product': True, 'central_quotient': '480.1189', 'commutator_count': 1, 'commutator_label': '120.15', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '3.1', '5.1'], 'composition_length': 8, 'conjugacy_classes_known': True, 'counter': 10898, 'cyclic': False, 'derived_length': 4, 'dihedral': False, 'direct_factorization': [['20.3', 1], ['48.28', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 5, 1, 2], [3, 8, 1, 1], [4, 5, 2, 2], [4, 6, 1, 1], [4, 12, 1, 1], [4, 30, 1, 1], [4, 30, 2, 1], [4, 60, 1, 1], [4, 60, 2, 1], [5, 4, 1, 1], [6, 8, 1, 1], [6, 40, 1, 2], [8, 6, 2, 1], [8, 30, 2, 1], [8, 30, 4, 1], [10, 4, 1, 1], [12, 40, 2, 2], [15, 32, 1, 1], [20, 24, 1, 1], [20, 48, 1, 1], [30, 32, 1, 1], [40, 24, 2, 1]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 72, 'exponent': 120, 'exponents_of_order': [6, 1, 1], 'factors_of_aut_order': [2, 3, 5], 'factors_of_order': [2, 3, 5], 'faithful_reps': [[8, -1, 2], [16, -1, 1]], 'familial': False, 'frattini_label': '2.1', 'frattini_quotient': '480.1189', 'hash': 10898, 'hyperelementary': 1, 'id': 307339, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 60, 'inner_gen_orders': [2, 12, 2, 10], 'inner_gens': [[1, 10, 720, 312], [17, 2, 744, 600], [745, 242, 24, 528], [265, 938, 504, 48]], 'inner_hash': 1189, 'inner_nilpotent': False, 'inner_order': 480, 'inner_split': True, 'inner_tex': 'F_5\\times S_4', 'inner_used': [1, 2, 3, 4], 'irrC_degree': 8, 'irrQ_degree': 16, 'irrQ_dim': 32, 'irrR_degree': 16, 'irrep_stats': [[1, 8], [2, 12], [3, 8], [4, 6], [8, 3], [12, 2], [16, 1]], 'label': '960.10898', 'linC_count': 16, 'linC_degree': 6, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 8, 'linQ_degree_count': 8, 'linQ_dim': 12, 'linQ_dim_count': 12, 'linR_count': 12, 'linR_degree': 8, 'maximal_subgroups_known': True, 'metabelian': False, 'metacyclic': False, 'monomial': False, 'name': 'F5*C2.S4', 'ngens': 8, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 31, 'number_characteristic_subgroups': 22, 'number_conjugacy_classes': 40, 'number_divisions': 28, 'number_normal_subgroups': 24, 'number_subgroup_autclasses': 134, 'number_subgroup_classes': 140, 'number_subgroups': 1198, 'old_label': None, 'order': 960, 'order_factorization_type': 311, 'order_stats': [[1, 1], [2, 11], [3, 8], [4, 308], [5, 4], [6, 88], [8, 192], [10, 4], [12, 160], [15, 32], [20, 72], [30, 32], [40, 48]], 'outer_abelian': True, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 2, 'outer_gen_orders': [2, 2], 'outer_gen_pows': [0, 0], 'outer_gens': [[1, 482, 24, 48], [1, 26, 504, 528]], 'outer_group': '4.2', 'outer_hash': 2, 'outer_nilpotent': True, 'outer_order': 4, 'outer_permdeg': 4, 'outer_perms': [1, 6], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2^2', 'pc_rank': 4, 'perfect': False, 'permutation_degree': 21, 'pgroup': 0, 'primary_abelian_invariants': [2, 4], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 4], [2, 4], [3, 4], [4, 7], [6, 2], [8, 3], [12, 2], [16, 2]], 'representations': {'PC': {'code': 6719295704378429454534285939689781794092755915739209425194503478483958418047235, 'gens': [1, 2, 5, 6], 'pres': [8, -2, -2, -2, -3, -2, 2, -2, -5, 3840, 161, 41, 482, 66, 515, 28804, 14892, 2420, 3748, 836, 14981, 14413, 11253, 4781, 1093, 141, 18830, 12118, 166, 12303, 12311]}, 'GLZN': {'d': 2, 'p': 35, 'gens': [1134191, 686886, 43121, 1243383, 184474, 42904, 257256, 502806]}, 'Perm': {'d': 21, 'gens': [9, 2839204369220083200, 16, 9627899287432320, 34, 5374945241585065440, 7953015653212775760, 10516264090295443920]}}, 'schur_multiplier': [2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 4], 'solvability_type': 12, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': False, 'sylow_subgroups_known': True, 'tex_name': 'F_5\\times C_2.S_4', 'transitive_degree': 80, 'wreath_data': None, 'wreath_product': False}