Formats: - HTML - YAML - JSON - 2025-11-19T19:38:02.233190
Query: /api/gps_groups/?_offset=0
Show schema

{'Agroup': True, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '80.20', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 220, 'aut_gen_orders': [2, 2, 2, 10, 44], 'aut_gens': [[1, 20], [1, 430], [1, 860], [451, 460], [1, 580], [261, 20]], 'aut_group': '3520.b', 'aut_hash': 1968696860554166433, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 3520, 'aut_permdeg': 88, 'aut_perms': [51149687483348324893635493870185958754354869087812572706176087914937442141400135213517561164567557327995595834468411384127648053711295, 51149857535582145772920668861247278423442628823154792196094821216269869589414005218717080308794944298804888357013210646564755709636479, 133695988386698584621703388382643651316600715818581856293144378749881098537344342148075295129627322866416713201392462349753167079407960, 139705848075350386825136833009239102618650775278386819385242629201151249589634903407199210558463512595385709491888932407004681723530250, 6397177288346006444238187225755419054164822439048045214954072029222975760878072147966316496941881219712234309729989042581424025548254], 'aut_phi_ratio': 11.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 1, 2, 1], [4, 1, 4, 1], [4, 11, 8, 1], [5, 11, 1, 4], [10, 11, 1, 4], [10, 11, 2, 4], [11, 10, 1, 1], [20, 11, 4, 4], [20, 11, 8, 4], [22, 10, 1, 1], [22, 10, 2, 1], [44, 10, 4, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_2^2\\wr C_2\\times F_{11}', 'autcent_abelian': False, 'autcent_cyclic': False, 'autcent_exponent': 4, 'autcent_group': '32.27', 'autcent_hash': 27, 'autcent_nilpotent': True, 'autcent_order': 32, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^2\\wr C_2', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 110, 'autcentquo_group': '110.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': False, 'autcentquo_order': 110, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'F_{11}', 'cc_stats': [[1, 1, 1], [2, 1, 3], [4, 1, 4], [4, 11, 8], [5, 11, 4], [10, 11, 12], [11, 10, 1], [20, 11, 48], [22, 10, 3], [44, 10, 4]], 'center_label': '8.2', 'center_order': 8, 'central_product': True, 'central_quotient': '110.1', 'commutator_count': 1, 'commutator_label': '11.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '5.1', '11.1'], 'composition_length': 6, 'conjugacy_classes_known': True, 'counter': 14, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [['220.1', 1], ['4.1', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 3], [4, 1, 2, 2], [4, 11, 2, 4], [5, 11, 4, 1], [10, 11, 4, 3], [11, 10, 1, 1], [20, 11, 8, 6], [22, 10, 1, 3], [44, 10, 2, 2]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 72, 'exponent': 220, 'exponents_of_order': [4, 1, 1], 'factors_of_aut_order': [2, 5, 11], 'factors_of_order': [2, 5, 11], 'faithful_reps': [], 'familial': False, 'frattini_label': '4.2', 'frattini_quotient': '220.7', 'hash': 14, 'hyperelementary': 1, 'id': 304858, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 110, 'inner_gen_orders': [10, 11], 'inner_gens': [[1, 260], [641, 20]], 'inner_hash': 1, 'inner_nilpotent': False, 'inner_order': 110, 'inner_split': True, 'inner_tex': 'F_{11}', 'inner_used': [1, 2], 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': -1, 'irrep_stats': [[1, 80], [10, 8]], 'label': '880.14', 'linC_count': 240, 'linC_degree': 11, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 12, 'linQ_degree_count': 8, 'linQ_dim': 14, 'linQ_dim_count': 24, 'linR_count': 600, 'linR_degree': 14, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'C44:C20', 'ngens': 6, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 29, 'number_characteristic_subgroups': 14, 'number_conjugacy_classes': 88, 'number_divisions': 26, 'number_normal_subgroups': 38, 'number_subgroup_autclasses': 36, 'number_subgroup_classes': 60, 'number_subgroups': 280, 'old_label': None, 'order': 880, 'order_factorization_type': 311, 'order_stats': [[1, 1], [2, 3], [4, 92], [5, 44], [10, 132], [11, 10], [20, 528], [22, 30], [44, 40]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 4, 'outer_gen_orders': [2, 2, 2, 4], 'outer_gen_pows': [0, 0, 0, 0], 'outer_gens': [[441, 870], [451, 870], [11, 460], [231, 870]], 'outer_group': '32.27', 'outer_hash': 27, 'outer_nilpotent': True, 'outer_order': 32, 'outer_permdeg': 8, 'outer_perms': [23, 16, 16703, 40303], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2^2\\wr C_2', 'pc_rank': 2, 'perfect': False, 'permutation_degree': 19, 'pgroup': 0, 'primary_abelian_invariants': [4, 4, 5], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 4], [2, 6], [4, 4], [8, 6], [10, 4], [20, 2]], 'representations': {'PC': {'code': 905104656388517094171413156767632552229787003009, 'gens': [1, 4], 'pres': [6, -2, -2, -5, -2, -2, -11, 12, 31, 6243, 8889, 615, 69, 15604, 9010, 1516, 88, 5765, 5771, 3617]}, 'GLZN': {'d': 2, 'p': 55, 'gens': [166651, 166391, 166407, 7154179, 166409, 5656784]}, 'Perm': {'d': 19, 'gens': [357001416582489, 10216, 756024112529280, 16696, 16680, 7469717690131200]}}, 'schur_multiplier': [4], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [4, 20], 'solvability_type': 6, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_{44}:C_{20}', 'transitive_degree': 176, 'wreath_data': None, 'wreath_product': False}