Query:
/api/gps_groups/?_offset=0
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '24.9', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 110, 'aut_gen_orders': [2, 2, 2, 10, 22], 'aut_gens': [[1, 2], [265, 134], [1, 398], [1, 134], [1, 290], [481, 178]], 'aut_group': '1760.1272', 'aut_hash': 1272, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 1760, 'aut_permdeg': 28, 'aut_perms': [22988254553903335866756358583, 29325761720439972480, 24460313391511159680, 294559195653662324094847520753, 97727683545779933631202549080], 'aut_phi_ratio': 11.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 22, 1, 1], [3, 1, 2, 1], [4, 1, 2, 1], [4, 22, 1, 1], [6, 1, 2, 1], [6, 22, 2, 1], [8, 2, 2, 1], [8, 22, 2, 1], [11, 2, 5, 1], [12, 1, 4, 1], [12, 22, 2, 1], [22, 2, 5, 1], [24, 2, 4, 1], [24, 22, 4, 1], [33, 2, 10, 1], [44, 2, 10, 1], [66, 2, 10, 1], [88, 2, 20, 1], [132, 2, 20, 1], [264, 2, 40, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_2^4\\times F_{11}', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 2, 'autcent_group': '16.14', 'autcent_hash': 14, 'autcent_nilpotent': True, 'autcent_order': 16, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^4', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 110, 'autcentquo_group': '110.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': False, 'autcentquo_order': 110, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'F_{11}', 'cc_stats': [[1, 1, 1], [2, 1, 1], [2, 22, 1], [3, 1, 2], [4, 1, 2], [4, 22, 1], [6, 1, 2], [6, 22, 2], [8, 2, 2], [8, 22, 2], [11, 2, 5], [12, 1, 4], [12, 22, 2], [22, 2, 5], [24, 2, 4], [24, 22, 4], [33, 2, 10], [44, 2, 10], [66, 2, 10], [88, 2, 20], [132, 2, 20], [264, 2, 40]], 'center_label': '12.2', 'center_order': 12, 'central_product': True, 'central_quotient': '44.3', 'commutator_count': 1, 'commutator_label': '22.2', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '3.1', '11.1'], 'composition_length': 6, 'conjugacy_classes_known': True, 'counter': 32, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [['176.4', 1], ['3.1', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 22, 1, 1], [3, 1, 2, 1], [4, 1, 2, 1], [4, 22, 1, 1], [6, 1, 2, 1], [6, 22, 2, 1], [8, 2, 2, 1], [8, 22, 2, 1], [11, 2, 5, 1], [12, 1, 4, 1], [12, 22, 2, 1], [22, 2, 5, 1], [24, 2, 4, 1], [24, 22, 4, 1], [33, 2, 10, 1], [44, 2, 10, 1], [66, 2, 10, 1], [88, 2, 20, 1], [132, 2, 20, 1], [264, 2, 40, 1]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 48, 'exponent': 264, 'exponents_of_order': [4, 1, 1], 'factors_of_aut_order': [2, 5, 11], 'factors_of_order': [2, 3, 11], 'faithful_reps': [[2, 0, 40]], 'familial': False, 'frattini_label': '4.1', 'frattini_quotient': '132.7', 'hash': 32, 'hyperelementary': 2, 'id': 280264, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 22, 'inner_gen_orders': [2, 22], 'inner_gens': [[1, 218], [313, 2]], 'inner_hash': 3, 'inner_nilpotent': False, 'inner_order': 44, 'inner_split': True, 'inner_tex': 'D_{22}', 'inner_used': [1, 2], 'irrC_degree': 2, 'irrQ_degree': 80, 'irrQ_dim': 80, 'irrR_degree': 4, 'irrep_stats': [[1, 24], [2, 126]], 'label': '528.32', 'linC_count': 40, 'linC_degree': 2, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 16, 'linQ_degree_count': 8, 'linQ_dim': 16, 'linQ_dim_count': 8, 'linR_count': 20, 'linR_degree': 4, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'C264:C2', 'ngens': 6, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 22, 'number_characteristic_subgroups': 26, 'number_conjugacy_classes': 150, 'number_divisions': 22, 'number_normal_subgroups': 26, 'number_subgroup_autclasses': 40, 'number_subgroup_classes': 40, 'number_subgroups': 184, 'old_label': None, 'order': 528, 'order_factorization_type': 311, 'order_stats': [[1, 1], [2, 23], [3, 2], [4, 24], [6, 46], [8, 48], [11, 10], [12, 48], [22, 10], [24, 96], [33, 20], [44, 20], [66, 20], [88, 40], [132, 40], [264, 80]], 'outer_abelian': True, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 10, 'outer_gen_orders': [2, 2, 10], 'outer_gen_pows': [0, 0, 0], 'outer_gens': [[265, 482], [1, 86], [265, 82]], 'outer_group': '40.14', 'outer_hash': 14, 'outer_nilpotent': True, 'outer_order': 40, 'outer_permdeg': 11, 'outer_perms': [720, 3628800, 40353], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2^2\\times C_{10}', 'pc_rank': 2, 'perfect': False, 'permutation_degree': 22, 'pgroup': 0, 'primary_abelian_invariants': [2, 4, 3], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 4], [2, 6], [4, 3], [8, 1], [10, 2], [20, 3], [40, 2], [80, 1]], 'representations': {'PC': {'code': 57041259466494386042887472126000019, 'gens': [1, 2], 'pres': [6, -2, -2, -2, -2, -3, -11, 2617, 31, 7850, 50, 8259, 69, 4804, 118, 17285]}, 'GLFp': {'d': 2, 'p': 109, 'gens': [90651445, 139863133]}, 'Perm': {'d': 22, 'gens': [7426796651898992047, 53902317833844480000, 6706022400, 112177098605924352000, 161058154786873344000, 4364893]}}, 'schur_multiplier': [], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 12], 'solvability_type': 6, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_{264}:C_2', 'transitive_degree': 264, 'wreath_data': None, 'wreath_product': False}