Formats: - HTML - YAML - JSON - 2025-11-19T15:58:22.148066
Query: /api/gps_groups/?_offset=0
Show schema

{'Agroup': True, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '20.5', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 5, 'aut_exponent': 1320, 'aut_gen_orders': [20, 10, 66, 6], 'aut_gens': [[1, 10, 30], [371, 680, 220], [781, 670, 510], [1151, 10, 690], [931, 20, 1310]], 'aut_group': None, 'aut_hash': 721779419800622324, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 95040, 'aut_permdeg': 29, 'aut_perms': [5212760139801825153349556333766, 1134048229849192730728562972194, 6696655330182053663976843842340, 5348096140114981417068958741122], 'aut_phi_ratio': 198.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 9, 2, 1], [3, 2, 4, 1], [5, 11, 1, 4], [6, 2, 4, 1], [10, 11, 1, 4], [10, 99, 2, 4], [11, 5, 2, 1], [15, 22, 4, 4], [22, 5, 2, 1], [22, 45, 4, 1], [30, 22, 4, 4], [33, 10, 8, 1], [66, 10, 8, 1]], 'aut_supersolvable': False, 'aut_tex': '\\PSU(3,2).C_{33}.C_5.C_2^3', 'autcent_abelian': True, 'autcent_cyclic': True, 'autcent_exponent': 2, 'autcent_group': '2.1', 'autcent_hash': 1, 'autcent_nilpotent': True, 'autcent_order': 2, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 1320, 'autcentquo_group': '47520.b', 'autcentquo_hash': 4147157100757437592, 'autcentquo_nilpotent': False, 'autcentquo_order': 47520, 'autcentquo_solvable': True, 'autcentquo_supersolvable': False, 'autcentquo_tex': 'F_{11}\\times C_3^2:\\GL(2,3)', 'cc_stats': [[1, 1, 1], [2, 1, 1], [2, 9, 2], [3, 2, 4], [5, 11, 4], [6, 2, 4], [10, 11, 4], [10, 99, 8], [11, 5, 2], [15, 22, 16], [22, 5, 2], [22, 45, 4], [30, 22, 16], [33, 10, 8], [66, 10, 8]], 'center_label': '2.1', 'center_order': 2, 'central_product': True, 'central_quotient': '990.16', 'commutator_count': 1, 'commutator_label': '99.2', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '3.1', '3.1', '5.1', '11.1'], 'composition_length': 6, 'conjugacy_classes_known': True, 'counter': 70, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [['18.4', 1], ['2.1', 1], ['55.1', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 9, 1, 2], [3, 2, 1, 4], [5, 11, 4, 1], [6, 2, 1, 4], [10, 11, 4, 1], [10, 99, 4, 2], [11, 5, 2, 1], [15, 22, 4, 4], [22, 5, 2, 1], [22, 45, 2, 2], [30, 22, 4, 4], [33, 10, 2, 4], [66, 10, 2, 4]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 31248, 'exponent': 330, 'exponents_of_order': [2, 2, 1, 1], 'factors_of_aut_order': [2, 3, 5, 11], 'factors_of_order': [2, 3, 5, 11], 'faithful_reps': [], 'familial': False, 'frattini_label': '1.1', 'frattini_quotient': '1980.70', 'hash': 70, 'hyperelementary': 1, 'id': 277573, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 330, 'inner_gen_orders': [10, 3, 33], 'inner_gens': [[1, 20, 1410], [21, 10, 30], [601, 10, 30]], 'inner_hash': 16, 'inner_nilpotent': False, 'inner_order': 990, 'inner_split': False, 'inner_tex': '(C_3\\times C_{33}):C_{10}', 'inner_used': [1, 2, 3], 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': -1, 'irrep_stats': [[1, 20], [2, 40], [5, 8], [10, 16]], 'label': '1980.70', 'linC_count': 4200, 'linC_degree': 9, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 14, 'linQ_degree_count': 84, 'linQ_dim': 14, 'linQ_dim_count': 84, 'linR_count': 84, 'linR_degree': 14, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': True, 'name': 'C33:(S3*C10)', 'ngens': 6, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 30, 'number_characteristic_subgroups': 15, 'number_conjugacy_classes': 84, 'number_divisions': 36, 'number_normal_subgroups': 45, 'number_subgroup_autclasses': 48, 'number_subgroup_classes': 120, 'number_subgroups': 1092, 'old_label': None, 'order': 1980, 'order_factorization_type': 222, 'order_stats': [[1, 1], [2, 19], [3, 8], [5, 44], [6, 8], [10, 836], [11, 10], [15, 352], [22, 190], [30, 352], [33, 80], [66, 80]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 12, 'outer_gen_orders': [2, 2, 6, 2, 2], 'outer_gen_pows': [10, 0, 0, 5, 1335], 'outer_gens': [[11, 10, 1290], [1, 660, 1360], [1651, 660, 1970], [1, 1340, 50], [661, 660, 1370]], 'outer_group': '96.226', 'outer_hash': 226, 'outer_nilpotent': False, 'outer_order': 96, 'outer_permdeg': 8, 'outer_perms': [7, 120, 1456, 11520, 5160], 'outer_solvable': True, 'outer_supersolvable': False, 'outer_tex': 'C_2^2\\times S_4', 'pc_rank': 3, 'perfect': False, 'permutation_degree': 19, 'pgroup': 0, 'primary_abelian_invariants': [2, 2, 5], 'quasisimple': False, 'rank': 3, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 4], [2, 8], [4, 4], [8, 8], [10, 4], [20, 8]], 'representations': {'PC': {'code': 3926004301827688511632572892449881049031019, 'gens': [1, 3, 4], 'pres': [6, -2, -5, -3, -2, -3, -11, 12, 362, 33843, 11169, 69, 25204, 27910, 118, 19445, 29171]}, 'GLZN': {'d': 2, 'p': 66, 'gens': [287521, 433456, 6613135, 287893, 288949, 12362371]}, 'Perm': {'d': 19, 'gens': [745, 24, 401719050391680, 5763, 4, 7178193517380480]}}, 'schur_multiplier': [6], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 10], 'solvability_type': 7, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_{33}:(S_3\\times C_{10})', 'transitive_degree': 198, 'wreath_data': None, 'wreath_product': False}