Query:
/api/gps_groups/?_offset=0
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '80.52', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 20, 'aut_gen_orders': [4, 4, 4, 4, 4, 10, 4, 4, 10, 4], 'aut_gens': [[1, 2, 4, 80], [641, 2, 1210, 182], [361, 2, 852, 1360], [321, 842, 852, 720], [161, 42, 450, 342], [1441, 842, 812, 1400], [481, 42, 844, 120], [1161, 842, 52, 280], [201, 42, 1258, 1502], [681, 2, 458, 1342], [1481, 842, 76, 600]], 'aut_group': None, 'aut_hash': 6027430083213153847, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 40960, 'aut_permdeg': 36, 'aut_perms': [269196473858871968094790546142160460153083, 354637802189312074709705167294721868074036, 145017408213925023491838643258710684659629, 95601469497538327023120625067930642951912, 333379656038836095052311344209380876680839, 236501460144259049945619953748470224680342, 294117054678579340650004641947659733657385, 177099531120626088355153398186072443226741, 120418322310483278357233074933845635472446, 46310603937663149989357076322129727740019], 'aut_phi_ratio': 64.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 3], [2, 2, 2, 1], [2, 5, 4, 1], [2, 10, 2, 1], [4, 2, 2, 2], [4, 4, 2, 2], [4, 10, 2, 2], [4, 20, 2, 2], [5, 1, 4, 1], [5, 2, 2, 1], [5, 2, 8, 1], [10, 1, 4, 3], [10, 2, 2, 3], [10, 2, 8, 4], [10, 4, 4, 1], [10, 4, 16, 1], [10, 5, 16, 1], [10, 10, 8, 1], [20, 2, 8, 2], [20, 4, 4, 2], [20, 4, 8, 2], [20, 4, 16, 2], [20, 8, 4, 2], [20, 8, 16, 2], [20, 10, 8, 2], [20, 20, 8, 2]], 'aut_supersolvable': True, 'aut_tex': 'C_2^2\\times C_4\\times C_2^6.C_2\\times F_5', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 4, 'autcent_group': None, 'autcent_hash': 1718285292446712972, 'autcent_nilpotent': True, 'autcent_order': 1024, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^8\\times C_4', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 20, 'autcentquo_group': '40.12', 'autcentquo_hash': 12, 'autcentquo_nilpotent': False, 'autcentquo_order': 40, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_2\\times F_5', 'cc_stats': [[1, 1, 1], [2, 1, 3], [2, 2, 2], [2, 5, 4], [2, 10, 2], [4, 2, 4], [4, 4, 4], [4, 10, 4], [4, 20, 4], [5, 1, 4], [5, 2, 10], [10, 1, 12], [10, 2, 38], [10, 4, 20], [10, 5, 16], [10, 10, 8], [20, 2, 16], [20, 4, 56], [20, 8, 40], [20, 10, 16], [20, 20, 16]], 'center_label': '20.5', 'center_order': 20, 'central_product': True, 'central_quotient': '80.51', 'commutator_count': 1, 'commutator_label': '20.5', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '5.1', '5.1'], 'composition_length': 8, 'conjugacy_classes_known': True, 'counter': 9136, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [['10.1', 1], ['32.29', 1], ['5.1', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 3], [2, 2, 1, 2], [2, 5, 1, 4], [2, 10, 1, 2], [4, 2, 1, 2], [4, 2, 2, 1], [4, 4, 1, 4], [4, 10, 1, 2], [4, 10, 2, 1], [4, 20, 1, 4], [5, 1, 4, 1], [5, 2, 2, 1], [5, 2, 4, 2], [10, 1, 4, 3], [10, 2, 2, 3], [10, 2, 4, 8], [10, 4, 2, 2], [10, 4, 4, 4], [10, 5, 4, 4], [10, 10, 4, 2], [20, 2, 4, 2], [20, 2, 8, 1], [20, 4, 2, 2], [20, 4, 4, 9], [20, 4, 8, 2], [20, 8, 2, 4], [20, 8, 4, 8], [20, 10, 4, 2], [20, 10, 8, 1], [20, 20, 4, 4]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 48746880, 'exponent': 20, 'exponents_of_order': [6, 2], 'factors_of_aut_order': [2, 5], 'factors_of_order': [2, 5], 'faithful_reps': [], 'familial': False, 'frattini_label': '4.2', 'frattini_quotient': '400.219', 'hash': 9136, 'hyperelementary': 1, 'id': 213155, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 10, 'inner_gen_orders': [2, 2, 2, 10], 'inner_gens': [[1, 2, 4, 720], [1, 2, 844, 920], [1, 842, 4, 880], [961, 842, 804, 80]], 'inner_hash': 51, 'inner_nilpotent': False, 'inner_order': 80, 'inner_split': False, 'inner_tex': 'C_2^2\\times D_{10}', 'inner_used': [1, 2, 3, 4], 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': -1, 'irrep_stats': [[1, 80], [2, 140], [4, 60]], 'label': '1600.9136', 'linC_count': 97536, 'linC_degree': 6, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 12, 'linQ_degree_count': 2304, 'linQ_dim': 14, 'linQ_dim_count': 3584, 'linR_count': 1088, 'linR_degree': 8, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': True, 'name': 'C10^2.C2^4', 'ngens': 8, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 48, 'number_characteristic_subgroups': 86, 'number_conjugacy_classes': 280, 'number_divisions': 91, 'number_normal_subgroups': 242, 'number_subgroup_autclasses': 378, 'number_subgroup_classes': 718, 'number_subgroups': 2500, 'old_label': None, 'order': 1600, 'order_factorization_type': 32, 'order_stats': [[1, 1], [2, 47], [4, 144], [5, 24], [10, 328], [20, 1056]], 'outer_abelian': True, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 4, 'outer_gen_orders': [4, 2, 4, 2, 2, 2, 4, 4], 'outer_gen_pows': [0, 0, 0, 961, 641, 1220, 0, 0], 'outer_gens': [[641, 2, 450, 1142], [1001, 802, 836, 720], [841, 42, 1234, 1182], [641, 802, 76, 560], [161, 42, 76, 560], [1121, 42, 426, 1142], [321, 802, 68, 1040], [681, 2, 852, 560]], 'outer_group': '512.10494201', 'outer_hash': 8909733522074432791, 'outer_nilpotent': True, 'outer_order': 512, 'outer_permdeg': 512, 'outer_perms': [136822225861153619526228409348976374995070316163910295041040490147218241420486909807697742600722321511628971304482286090115576319936926075346332028440314404436902280478571849382886875914299457525891510217951351831286028249879853168726938452378782943789686253453578241856970059555759398713250663855032822951886035636866416031080912717858016054467468278078785140886159321814452539318569347440120946660408706691232646622872522503881038412286589892708092952909481463396212895383099140255403323940389508104607988217535783954073776491771059122953252669871233976023190716132764655672278376447486407032808507037384232036870438096632246220351562776490556596918140989113960519381324059612978206683429219156911895181530318961239510280247979236448094950757679056196784655603367405461919333317986825799493562430427428882379251505339994535323130218430454862243310127026734508994185820558047864015063839619242977906637457409194382468350188174124957745837352314126233775090033621812976433726104178731009408636864972101694869352655208073769888964074108905164244095173475835595116408663061169322047404678274039153028960205929445887225405982385420341336819300005179879557705685645731808, 345002967468570933442571556903557662790710793082856108745652209616062557118053235731616462854212593752275536923731907993856298586740997403060340271010237046291066817708867293715944372417862573640452348528962291996166769946677179308340316111062368659401166739160496073741788603153670560242220034363397632893470024182304407001229296485404731356056838438037828969617390530345750370817782188573290364637291367154237836083233109935508377354384610088710477876162596642669227509198772201761056320792325054786555648933145386037585070060651271588304732398119260060812334185753959625151773382686578076515110888228398696577859447720186443862078743321353869552939281366048541555285237586516758741408265988449971994874221148595023702355203776441213877947609222570684048046544744221944984725186712238057320395110660082647028842356950995327407701060351445724513261905898173938126199192561832910631919757708880012619806324470816046123508578183709623460265919229012823530463245506397041665325770789254719087148659755055849897965783102593334466301842616767177961757683038448199443389392754017704590698841925369028268101368240297164318162462877018812579915786073396885195872701387847301, 198051875033786900708095139625011201537036001476099044364423072409705261727995302531746264820331025978165410635196742657795236179632990752958032194678014623641171174593571087453263330270747457182613288928934613959874070158173505344643659494556674461757308003437058481927783761052515350807483417179946223017466848070680076532989574633843681988567370071153740909746597512395305274621417620851705115095530448821039447712269390793282172617198623601713122601950302028263834053464340772126370392489394655940764265305739695732255863797998199714544542461580228001505753874355138858543785451822476969491081290882846876288233916729435581840649119802443937778727609993460759552874341206604933762662931063643285400550596719333281802946187783495621181884280754456549690246986437986947950482158286618899936689905930330851826462162845360792958988940753487379012023048498185983564675985782600844441357648565416258201800711178618505443875292247955193083406784050502467633074309202141161844367813767953245295112169616980631113136798156012956138326414396991016396091971476318864292557832418123803241372276370539934552319674932169598627563924539944743358262054510906431809191176757744270, 319831623716807978034975114588350100687834586612233216134793481462450125211185051070191230776660269989192520026227138619075799186623298926310112189599226213275396303153065365923249746953571166178122101810220163650422968726905613586164976532626683433314225317235610008947112437345089800104623872459432968099064920206461680477844766718107273114428142222592852590269030452971067502669350136742731340628917605780878751729804247832450988763359247031630669424261540334398632815520939161960982059280757070943320981620404033714413567487521605934110351574521874537210036274274675324478142022198574188773416231859069002801121936229723335603444027037542273386560642413234173026306004574190206137092054689874003838025558291706824314435461622821458633376029464671775495043659143413500773794139182039122581647821962011507598198118181902031184118923791854851680976468214806008444949098171026825376561057114770792207553165572146974186280651023266680695002284424300129557131510106715898608505681191161035369123219146162845129573106653851295971204550702375372571543056638173231545360074534418777719665128585144069187596759224492983838798073347693189592086177422341582931338316169718561, 270142595156356897151443271113386652854591519669211247120645672451560343899243319971426531526761471597417772034451211065450734904627649173847890090303919267891500726835896026700557176807776076899491961048202201889838334896293952177251340740164563969771593759619697193760250677614886297849142939571580108720435376023044852164831700539243749357263598625548155416154411716506613006109227350708959136935545384833881779435447229052602398000913563385327460931108835067851582326545268991887540824528160653832456839168129152660443942547640395650763352074851883488221589942090682641221509668779314450298510935853871883347820062333189726238889612157228423292629998831067200922772004930024925950766777261038060619453529557753223896736611027459732076121003153144201735041461250482124353132657704879702988861576143140650803377364062041011877304639285785936040752136559864737064123875739926925312037248199118036505503315145496545396876093047091116875107919930129049367422488239261175637362160991509613594706487928713812815788349687627907970883736625021647181651657383406865699621471092209263983356938521820442195389709394070456107125596463349802860946494836127209870411836650461917, 56498000483993905272082344738739109475404132102026962028732520507456771107799505401516568026410684937853905988049701890386400420244200024305283707670968607043199380411227242083364616145578271549965570297968647397251446374166933980328821525909604995218477700339512461306631087769321304221194425984416857784432418637714745952046531033647225632667563130678516128956965267403832202321050778655155858394532996477483740454717008423661158050643609851545713624500926144191450956266174716181370032694207965725681846231128671402894297039082609376741706449663152576224841932269707402378546977957086335718335671445168584851175112642181926531106028398822502871293473904792237689598053632431674421993002254689472176497253973596171188226316554529593788068917396092189899306615537554685560339407284836833058228868514490594683830470013575728308136476103970640610720276305362701615571552204363560821555985324130990457325110843802693339204475180825839916175329250425215286895133861324052665939067943007156623184742838441138499338715734632072553964202975094771838929982802635770433301597922040074376603500694269659002355340789963059524068657395344292627076728488669501374997080271807556, 149026013087401181598780350565398077260150748170995196208497201891697266686897332689433230503085049423014431167525148858398040233091788460401135172433529333413259984976910121801173102469848138438068360808363797063621714471693064961386529330486064915857335788225663284032476442085555337556393293773576141209309500884462349949581986408106100000344658415282075943517615771362058485385636700550679282821643572785033488179619667232489250568992696016481404098091992466912754453962815824126248647230836567896497944753547511087628465322036003969833740569333532455163080645794641748827688636149311644006036898215547720309227849236186665316006537147858266505324493413435477483382440442051362127313955816078778231716413416428479137400333116894645892450040331467093760298422534273526372384256864229001170844457231220864018097231409474243970115901314331801574787341021516206564433884174191807737778240522709620136141298287154678187821582648959131554074676218746460071145134894179391148393198474011057717357227854916985997633059197515795439691147080204962275805659897216290141675791197017440417809571500961672232579730202694641103215666550024656650315786073396885195872701387847301, 195331244355866124028852805259150333730508503499364874371095054671057151862887769054319908417115513551135234443454764790604216642567242971451691207925978077786160603281891094014211968019523910564630593147560079711412342486519619369582083553540717609510068504491682476365758022508673762107571514630677166744802768391173797900038233943845660603079923395080823206759742439067453121594148188806904717913844719793949928641797348365299376782001685192780625459353131019861169456941006685825672888270987397476065157969677248104472882777263160837595055985281587675535954528171143667794877997291652377623810175674810294760267789809865132476345511751438019549282060498110981039187989207420812260654209093932770722966538540961505193369557766044424003725160784254832271232394956675033853103975659062289650883221032137022826292716692283569575001974238290571856434641772627899499514174039912361529477384020488815975997748370850952139610882859260339645275197047682501263911899971194179218787940830383716546108805842677838824646321587020166761259553360465894197009564248454673350925060760345921572799618924280179911123698556584894436136139485737303098588942553670456146396592449831676], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2^7\\times C_4', 'pc_rank': 4, 'perfect': False, 'permutation_degree': 22, 'pgroup': 0, 'primary_abelian_invariants': [2, 2, 2, 2, 5], 'quasisimple': False, 'rank': 4, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 16], [2, 8], [4, 26], [8, 28], [16, 11], [32, 2]], 'representations': {'PC': {'code': 1097423387731581219598284079479104757367046339, 'gens': [1, 2, 3, 6], 'pres': [8, 2, 2, 2, 2, 5, 2, 2, 5, 10138, 66, 91, 34565, 22093, 10581, 141, 80646, 166, 81927]}, 'GLZN': {'d': 2, 'p': 88, 'gens': [681481, 30666285, 1198429, 31010893, 52054276, 6133257, 8119947, 685345]}, 'Perm': {'d': 22, 'gens': [51353502436370539729, 12460, 7620480, 40298203, 109847011193484364800, 87091200, 5329, 160598585713210444800]}}, 'schur_multiplier': [2, 2, 2, 2, 2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2, 2, 10], 'solvability_type': 7, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_{10}^2.C_2^4', 'transitive_degree': 160, 'wreath_data': None, 'wreath_product': False}