Query:
/api/gps_groups/?_offset=0
{'Agroup': True, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '12.5', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 42, 'aut_gen_orders': [6, 14], 'aut_gens': [[1, 6], [1, 18], [55, 6]], 'aut_group': '84.7', 'aut_hash': 7, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 84, 'aut_permdeg': 9, 'aut_perms': [6055, 203047], 'aut_phi_ratio': 3.5, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 7, 2, 1], [3, 7, 1, 2], [6, 7, 1, 2], [6, 7, 2, 2], [7, 6, 1, 1], [14, 6, 1, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_2\\times F_7', 'autcent_abelian': True, 'autcent_cyclic': True, 'autcent_exponent': 2, 'autcent_group': '2.1', 'autcent_hash': 1, 'autcent_nilpotent': True, 'autcent_order': 2, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 42, 'autcentquo_group': '42.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': False, 'autcentquo_order': 42, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'F_7', 'cc_stats': [[1, 1, 1], [2, 1, 1], [2, 7, 2], [3, 7, 2], [6, 7, 6], [7, 6, 1], [14, 6, 1]], 'center_label': '2.1', 'center_order': 2, 'central_product': True, 'central_quotient': '42.1', 'commutator_count': 1, 'commutator_label': '7.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '3.1', '7.1'], 'composition_length': 4, 'conjugacy_classes_known': True, 'counter': 7, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [['2.1', 1], ['42.1', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 7, 1, 2], [3, 7, 2, 1], [6, 7, 2, 3], [7, 6, 1, 1], [14, 6, 1, 1]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 24, 'exponent': 42, 'exponents_of_order': [2, 1, 1], 'factors_of_aut_order': [2, 3, 7], 'factors_of_order': [2, 3, 7], 'faithful_reps': [[6, 1, 1]], 'familial': False, 'frattini_label': '1.1', 'frattini_quotient': '84.7', 'hash': 7, 'hyperelementary': 1, 'id': 159158, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 42, 'inner_gen_orders': [6, 7], 'inner_gens': [[1, 18], [73, 6]], 'inner_hash': 1, 'inner_nilpotent': False, 'inner_order': 42, 'inner_split': True, 'inner_tex': 'F_7', 'inner_used': [1, 2], 'irrC_degree': 6, 'irrQ_degree': 6, 'irrQ_dim': 6, 'irrR_degree': 6, 'irrep_stats': [[1, 12], [6, 2]], 'label': '84.7', 'linC_count': 1, 'linC_degree': 6, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 6, 'linQ_degree_count': 1, 'linQ_dim': 6, 'linQ_dim_count': 1, 'linR_count': 1, 'linR_degree': 6, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'C2*F7', 'ngens': 4, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 11, 'number_characteristic_subgroups': 8, 'number_conjugacy_classes': 14, 'number_divisions': 10, 'number_normal_subgroups': 12, 'number_subgroup_autclasses': 16, 'number_subgroup_classes': 20, 'number_subgroups': 68, 'old_label': None, 'order': 84, 'order_factorization_type': 222, 'order_stats': [[1, 1], [2, 15], [3, 14], [6, 42], [7, 6], [14, 6]], 'outer_abelian': True, 'outer_cyclic': True, 'outer_equivalence': False, 'outer_exponent': 2, 'outer_gen_orders': [2], 'outer_gen_pows': [0], 'outer_gens': [[43, 6]], 'outer_group': '2.1', 'outer_hash': 1, 'outer_nilpotent': True, 'outer_order': 2, 'outer_permdeg': 2, 'outer_perms': [1], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2', 'pc_rank': 2, 'perfect': False, 'permutation_degree': 9, 'pgroup': 0, 'primary_abelian_invariants': [2, 2, 3], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 4], [2, 4], [6, 2]], 'representations': {'PC': {'code': 2907990449920121, 'gens': [1, 3], 'pres': [4, -2, -3, -2, -7, 8, 218, 330, 34, 579, 199]}, 'GLZ': {'b': 3, 'd': 6, 'gens': [74818466862198241, 126382006127047834]}, 'GLFp': {'d': 2, 'p': 7, 'gens': [351, 1030, 2064]}, 'Perm': {'d': 9, 'gens': [5328, 1, 12486, 55854]}}, 'schur_multiplier': [2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 6], 'solvability_type': 6, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_2\\times F_7', 'transitive_degree': 14, 'wreath_data': None, 'wreath_product': False}