Formats: - HTML - YAML - JSON - 2025-11-17T07:57:05.707558
Query: /api/gps_groups/?_offset=0
Show schema

{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '16.14', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 3, 'aut_exponent': 12, 'aut_gen_orders': [2, 2, 2, 2, 2, 3, 2, 2], 'aut_gens': [[1, 2, 4, 8], [53, 22, 36, 8], [1, 34, 4, 40], [33, 18, 36, 56], [33, 34, 36, 56], [1, 34, 4, 8], [21, 51, 33, 8], [1, 34, 36, 8], [33, 2, 36, 8]], 'aut_group': '384.20051', 'aut_hash': 20051, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 384, 'aut_permdeg': 10, 'aut_perms': [40320, 1, 126, 55, 288, 45360, 367920, 806400], 'aut_phi_ratio': 12.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 2, 3, 1], [2, 4, 1, 1], [2, 4, 3, 1], [4, 2, 1, 1], [4, 2, 3, 1], [4, 4, 1, 1], [4, 4, 3, 1], [8, 2, 2, 1], [8, 4, 3, 1]], 'aut_supersolvable': False, 'aut_tex': '\\GL(2,\\mathbb{Z}/4):C_2^2', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 2, 'autcent_group': '16.14', 'autcent_hash': 14, 'autcent_nilpotent': True, 'autcent_order': 16, 'autcent_solvable': True, 'autcent_split': False, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^4', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 6, 'autcentquo_group': '24.14', 'autcentquo_hash': 14, 'autcentquo_nilpotent': False, 'autcentquo_order': 24, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_2\\times D_6', 'cc_stats': [[1, 1, 1], [2, 1, 1], [2, 2, 3], [2, 4, 4], [4, 2, 4], [4, 4, 4], [8, 2, 2], [8, 4, 3]], 'center_label': '2.1', 'center_order': 2, 'central_product': True, 'central_quotient': '32.46', 'commutator_count': 1, 'commutator_label': '4.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '2.1'], 'composition_length': 6, 'conjugacy_classes_known': True, 'counter': 258, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 2, 1, 3], [2, 4, 1, 4], [4, 2, 1, 4], [4, 4, 1, 4], [8, 2, 2, 1], [8, 4, 1, 3]], 'element_repr_type': 'PC', 'elementary': 2, 'eulerian_function': 13440, 'exponent': 8, 'exponents_of_order': [6], 'factors_of_aut_order': [2, 3], 'factors_of_order': [2], 'faithful_reps': [[4, 0, 2]], 'familial': False, 'frattini_label': '4.1', 'frattini_quotient': '16.14', 'hash': 258, 'hyperelementary': 2, 'id': 157046, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 4, 'inner_gen_orders': [2, 2, 2, 4], 'inner_gens': [[1, 2, 36, 8], [1, 2, 4, 24], [33, 2, 4, 8], [1, 50, 4, 8]], 'inner_hash': 46, 'inner_nilpotent': True, 'inner_order': 32, 'inner_split': True, 'inner_tex': 'C_2^2\\times D_4', 'inner_used': [1, 2, 3, 4], 'irrC_degree': 4, 'irrQ_degree': 8, 'irrQ_dim': 8, 'irrR_degree': 8, 'irrep_stats': [[1, 16], [2, 4], [4, 2]], 'label': '64.258', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': None, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': True, 'name': 'D8:C2^2', 'ngens': 4, 'nilpotency_class': 3, 'nilpotent': True, 'normal_counts': [0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 11, 'number_characteristic_subgroups': 13, 'number_conjugacy_classes': 22, 'number_divisions': 21, 'number_normal_subgroups': 79, 'number_subgroup_autclasses': 54, 'number_subgroup_classes': 129, 'number_subgroups': 205, 'old_label': None, 'order': 64, 'order_factorization_type': 3, 'order_stats': [[1, 1], [2, 23], [4, 24], [8, 16]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': True, 'outer_exponent': 6, 'outer_gen_orders': [2, 6], 'outer_gen_pows': [4, 16], 'outer_gens': [[21, 6, 4, 8], [53, 3, 1, 40]], 'outer_group': '12.4', 'outer_hash': 4, 'outer_nilpotent': False, 'outer_order': 12, 'outer_permdeg': 5, 'outer_perms': [6, 31], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'D_6', 'pc_rank': 4, 'perfect': False, 'permutation_degree': 16, 'pgroup': 2, 'primary_abelian_invariants': [2, 2, 2, 2], 'quasisimple': False, 'rank': 4, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 16], [2, 4], [8, 1]], 'representations': {'PC': {'code': 18146306037848, 'gens': [1, 2, 3, 4], 'pres': [6, -2, 2, 2, 2, -2, -2, 650, 297, 69, 730, 88]}, 'GLFp': {'d': 4, 'p': 3, 'gens': [34247624, 14557484, 28410960, 37630912, 28816400, 28233362]}, 'Perm': {'d': 16, 'gens': [12526762711680, 5612462150399, 8402294108878, 5606234750016, 4097506706057, 1313941673647]}}, 'schur_multiplier': [2, 2, 2, 2, 2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2, 2, 2], 'solvability_type': 4, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'D_8:C_2^2', 'transitive_degree': 16, 'wreath_data': None, 'wreath_product': False}