Query:
/api/gps_groups/?_offset=0
{'Agroup': True, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '8.2', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 220, 'aut_gen_orders': [2, 10, 44], 'aut_gens': [[1, 4], [3, 84], [3, 38], [39, 6]], 'aut_group': '880.118', 'aut_hash': 118, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 880, 'aut_permdeg': 15, 'aut_perms': [6321546127, 45234459503, 177511906097], 'aut_phi_ratio': 22.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 1, 2, 1], [4, 11, 4, 1], [11, 2, 5, 1], [22, 2, 5, 1], [22, 2, 10, 1]], 'aut_supersolvable': True, 'aut_tex': 'D_4\\times F_{11}', 'autcent_abelian': False, 'autcent_cyclic': False, 'autcent_exponent': 4, 'autcent_group': '8.3', 'autcent_hash': 3, 'autcent_nilpotent': True, 'autcent_order': 8, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'D_4', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 110, 'autcentquo_group': '110.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': False, 'autcentquo_order': 110, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'F_{11}', 'cc_stats': [[1, 1, 1], [2, 1, 3], [4, 11, 4], [11, 2, 5], [22, 2, 15]], 'center_label': '4.2', 'center_order': 4, 'central_product': True, 'central_quotient': '22.1', 'commutator_count': 1, 'commutator_label': '11.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '11.1'], 'composition_length': 4, 'conjugacy_classes_known': True, 'counter': 6, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [['2.1', 1], ['44.1', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 3], [4, 11, 2, 2], [11, 2, 5, 1], [22, 2, 5, 3]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 3, 'exponent': 44, 'exponents_of_order': [3, 1], 'factors_of_aut_order': [2, 5, 11], 'factors_of_order': [2, 11], 'faithful_reps': [], 'familial': False, 'frattini_label': '2.1', 'frattini_quotient': '44.3', 'hash': 6, 'hyperelementary': 2, 'id': 133076, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 22, 'inner_gen_orders': [2, 11], 'inner_gens': [[1, 84], [9, 4]], 'inner_hash': 1, 'inner_nilpotent': False, 'inner_order': 22, 'inner_split': True, 'inner_tex': 'D_{11}', 'inner_used': [1, 2], 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': -1, 'irrep_stats': [[1, 8], [2, 20]], 'label': '88.6', 'linC_count': 60, 'linC_degree': 3, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 11, 'linQ_degree_count': 4, 'linQ_dim': 12, 'linQ_dim_count': 2, 'linR_count': 10, 'linR_degree': 4, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'C22:C4', 'ngens': 4, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 7, 'number_characteristic_subgroups': 7, 'number_conjugacy_classes': 28, 'number_divisions': 10, 'number_normal_subgroups': 13, 'number_subgroup_autclasses': 12, 'number_subgroup_classes': 16, 'number_subgroups': 46, 'old_label': None, 'order': 88, 'order_factorization_type': 31, 'order_stats': [[1, 1], [2, 3], [4, 44], [11, 10], [22, 30]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 20, 'outer_gen_orders': [2, 20], 'outer_gen_pows': [0, 0], 'outer_gens': [[45, 84], [45, 38]], 'outer_group': '40.10', 'outer_hash': 10, 'outer_nilpotent': True, 'outer_order': 40, 'outer_permdeg': 9, 'outer_perms': [41040, 120993], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_5\\times D_4', 'pc_rank': 2, 'perfect': False, 'permutation_degree': 17, 'pgroup': 0, 'primary_abelian_invariants': [2, 4], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 4], [2, 2], [10, 4]], 'representations': {'PC': {'code': 31799286290009, 'gens': [1, 3], 'pres': [4, -2, -2, -2, -11, 8, 1010, 34, 1283]}, 'GLZN': {'d': 2, 'p': 33, 'gens': [826574, 359380, 36037, 48113]}, 'Perm': {'d': 17, 'gens': [1313941673671, 1, 288, 23550673230000]}}, 'schur_multiplier': [2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 4], 'solvability_type': 6, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_{22}:C_4', 'transitive_degree': 88, 'wreath_data': None, 'wreath_product': False}