Query:
/api/gps_groups/?_offset=0
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '8.5', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 5, 'aut_exponent': 24, 'aut_gen_orders': [6, 12, 6, 12, 6, 12], 'aut_gens': [[1, 2, 6, 72], [61, 4, 116, 360], [257, 4, 174, 108], [39, 4, 330, 72], [53, 50, 114, 396], [61, 24, 10, 396], [27, 2, 224, 396]], 'aut_group': None, 'aut_hash': 5021769045021328298, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 82944, 'aut_permdeg': 48, 'aut_perms': [4367988180066345573194503027829686114375028150456496724755437, 10027421638661354259289665439269572368094396867631124204862754, 550270615308558541811124922024317244295412573267771626248483, 11588326998168085008553899210837295359738010331574935756389984, 742957011561941276973327383442036989917317770003402488126018, 8772969707494161177968373925066990730571712618726686448522526], 'aut_phi_ratio': 576.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 1, 2, 1], [2, 18, 2, 1], [2, 54, 2, 1], [3, 2, 1, 1], [3, 2, 4, 1], [3, 4, 4, 1], [4, 6, 2, 1], [6, 2, 1, 1], [6, 2, 2, 1], [6, 2, 4, 1], [6, 2, 8, 1], [6, 4, 4, 1], [6, 4, 8, 1], [6, 18, 4, 1], [12, 6, 16, 1]], 'aut_supersolvable': False, 'aut_tex': '\\PSU(3,2).C_6^2.C_2^5', 'autcent_abelian': False, 'autcent_cyclic': False, 'autcent_exponent': 4, 'autcent_group': '32.27', 'autcent_hash': 27, 'autcent_nilpotent': True, 'autcent_order': 32, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^2\\wr C_2', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 24, 'autcentquo_group': '2592.fv', 'autcentquo_hash': 9019849488891309561, 'autcentquo_nilpotent': False, 'autcentquo_order': 2592, 'autcentquo_solvable': True, 'autcentquo_supersolvable': False, 'autcentquo_tex': 'S_3\\times C_3^2:\\GL(2,3)', 'cc_stats': [[1, 1, 1], [2, 1, 3], [2, 18, 2], [2, 54, 2], [3, 2, 5], [3, 4, 4], [4, 6, 2], [6, 2, 15], [6, 4, 12], [6, 18, 4], [12, 6, 16]], 'center_label': '4.2', 'center_order': 4, 'central_product': True, 'central_quotient': '108.39', 'commutator_count': 1, 'commutator_label': '54.15', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '3.1', '3.1', '3.1'], 'composition_length': 7, 'conjugacy_classes_known': True, 'counter': 682, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [['2.1', 1], ['216.129', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 3], [2, 18, 1, 2], [2, 54, 1, 2], [3, 2, 1, 5], [3, 4, 1, 4], [4, 6, 1, 2], [6, 2, 1, 15], [6, 4, 1, 12], [6, 18, 2, 2], [12, 6, 2, 8]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 168, 'exponent': 12, 'exponents_of_order': [4, 3], 'factors_of_aut_order': [2, 3], 'factors_of_order': [2, 3], 'faithful_reps': [], 'familial': False, 'frattini_label': '2.1', 'frattini_quotient': '216.171', 'hash': 682, 'hyperelementary': 1, 'id': 127645, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 6, 'inner_gen_orders': [2, 3, 6, 3], 'inner_gens': [[1, 4, 66, 72], [5, 2, 6, 72], [13, 2, 6, 360], [1, 2, 150, 72]], 'inner_hash': 39, 'inner_nilpotent': False, 'inner_order': 108, 'inner_split': False, 'inner_tex': 'C_3:S_3^2', 'inner_used': [1, 2, 3, 4], 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': -1, 'irrep_stats': [[1, 8], [2, 42], [4, 16]], 'label': '432.682', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 6, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': True, 'name': 'C6^2.D6', 'ngens': 7, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 17, 'number_characteristic_subgroups': 18, 'number_conjugacy_classes': 66, 'number_divisions': 56, 'number_normal_subgroups': 92, 'number_subgroup_autclasses': 112, 'number_subgroup_classes': 452, 'number_subgroups': 3160, 'old_label': None, 'order': 432, 'order_factorization_type': 33, 'order_stats': [[1, 1], [2, 147], [3, 26], [4, 12], [6, 150], [12, 96]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': True, 'outer_exponent': 24, 'outer_gen_orders': [6, 2, 2, 6, 4], 'outer_gen_pows': [0, 292, 48, 0, 28], 'outer_gens': [[219, 48, 80, 360], [221, 2, 356, 72], [13, 2, 258, 360], [241, 48, 356, 360], [255, 26, 246, 396]], 'outer_group': '768.1089286', 'outer_hash': 1089286, 'outer_nilpotent': False, 'outer_order': 768, 'outer_permdeg': 32, 'outer_perms': [195593305884229897139174780398263692, 185573606164527718691696651511076180, 119137284396243291899095220995432664, 181329261101055468228667860459566600, 150399392967734201507050348080821031], 'outer_solvable': True, 'outer_supersolvable': False, 'outer_tex': 'Q_8.(C_2\\times S_3\\times D_4)', 'pc_rank': 4, 'perfect': False, 'permutation_degree': 15, 'pgroup': 0, 'primary_abelian_invariants': [2, 2, 2], 'quasisimple': False, 'rank': 3, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 8], [2, 22], [4, 26]], 'representations': {'PC': {'code': 20936774360526859833430341973541, 'gens': [1, 2, 3, 6], 'pres': [7, -2, -3, -2, -2, -3, -2, -3, 57, 1388, 58, 1683, 80, 1684, 2539, 124, 2372]}, 'GLZ': {'b': 3, 'd': 6, 'gens': [24992892279828617, 91793129339193097, 108378800754245886]}, 'GLZN': {'d': 2, 'p': 36, 'gens': [47089, 793169, 1184123, 1632995, 502525, 1394809, 1197949]}, 'Perm': {'d': 15, 'gens': [39917665, 6227061384, 39918480, 1680, 403200, 93405312000, 3]}}, 'schur_multiplier': [2, 2, 6], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2, 2], 'solvability_type': 7, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_6^2.D_6', 'transitive_degree': 72, 'wreath_data': None, 'wreath_product': False}