Query:
/api/gps_groups/?_offset=0
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '24.9', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 6, 'aut_gen_orders': [2, 2, 6, 2, 2, 2, 6, 2], 'aut_gens': [[1, 12, 144], [59, 138, 144], [5, 300, 288], [97, 228, 144], [79, 132, 144], [131, 132, 144], [25, 282, 288], [59, 84, 144], [11, 18, 288]], 'aut_group': '1152.153312', 'aut_hash': 6693517770522478423, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 1152, 'aut_permdeg': 26, 'aut_perms': [294452803911969214270096287, 8105636750712118878770221, 277823964019840224978357796, 207524499437174669649886219, 129216644536382907118191248, 45916659429905295719891109, 192013543135539861782613002, 284025429184640781933712911], 'aut_phi_ratio': 8.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 3], [3, 1, 2, 1], [3, 2, 1, 2], [3, 2, 2, 2], [3, 4, 1, 1], [3, 4, 2, 1], [4, 6, 2, 2], [4, 18, 2, 1], [6, 1, 2, 3], [6, 2, 1, 6], [6, 2, 2, 6], [6, 4, 1, 3], [6, 4, 2, 3], [12, 6, 4, 4], [12, 6, 8, 2], [12, 18, 4, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_2^3\\times D_6^2', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 2, 'autcent_group': '32.51', 'autcent_hash': 51, 'autcent_nilpotent': True, 'autcent_order': 32, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^5', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 6, 'autcentquo_group': '36.10', 'autcentquo_hash': 10, 'autcentquo_nilpotent': False, 'autcentquo_order': 36, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'S_3^2', 'cc_stats': [[1, 1, 1], [2, 1, 3], [3, 1, 2], [3, 2, 6], [3, 4, 3], [4, 6, 4], [4, 18, 2], [6, 1, 6], [6, 2, 18], [6, 4, 9], [12, 6, 32], [12, 18, 4]], 'center_label': '12.5', 'center_order': 12, 'central_product': True, 'central_quotient': '36.10', 'commutator_count': 1, 'commutator_label': '18.5', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '3.1', '3.1', '3.1'], 'composition_length': 7, 'conjugacy_classes_known': True, 'counter': 428, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [['144.66', 1], ['3.1', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 3], [3, 1, 2, 1], [3, 2, 1, 2], [3, 2, 2, 2], [3, 4, 1, 1], [3, 4, 2, 1], [4, 6, 1, 2], [4, 6, 2, 1], [4, 18, 2, 1], [6, 1, 2, 3], [6, 2, 1, 6], [6, 2, 2, 6], [6, 4, 1, 3], [6, 4, 2, 3], [12, 6, 2, 4], [12, 6, 4, 6], [12, 18, 4, 1]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 24, 'exponent': 12, 'exponents_of_order': [4, 3], 'factors_of_aut_order': [2, 3], 'factors_of_order': [2, 3], 'faithful_reps': [], 'familial': False, 'frattini_label': '4.2', 'frattini_quotient': '108.38', 'hash': 428, 'hyperelementary': 1, 'id': 127489, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 6, 'inner_gen_orders': [2, 6, 3], 'inner_gens': [[1, 132, 144], [25, 12, 288], [1, 300, 144]], 'inner_hash': 10, 'inner_nilpotent': False, 'inner_order': 36, 'inner_split': True, 'inner_tex': 'S_3^2', 'inner_used': [1, 2, 3], 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': -1, 'irrep_stats': [[1, 24], [2, 54], [4, 12]], 'label': '432.428', 'linC_count': 192, 'linC_degree': 4, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 6, 'linQ_degree_count': 4, 'linQ_dim': 8, 'linQ_dim_count': 35, 'linR_count': 28, 'linR_degree': 6, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': True, 'name': 'C6^2.D6', 'ngens': 7, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 42, 'number_characteristic_subgroups': 52, 'number_conjugacy_classes': 90, 'number_divisions': 47, 'number_normal_subgroups': 60, 'number_subgroup_autclasses': 148, 'number_subgroup_classes': 162, 'number_subgroups': 448, 'old_label': None, 'order': 432, 'order_factorization_type': 33, 'order_stats': [[1, 1], [2, 3], [3, 26], [4, 60], [6, 78], [12, 264]], 'outer_abelian': True, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 2, 'outer_gen_orders': [2, 2, 2, 2, 2], 'outer_gen_pows': [0, 0, 0, 0, 0], 'outer_gens': [[7, 12, 144], [73, 60, 144], [1, 66, 144], [5, 12, 144], [1, 60, 144]], 'outer_group': '32.51', 'outer_hash': 51, 'outer_nilpotent': True, 'outer_order': 32, 'outer_permdeg': 32, 'outer_perms': [8268628444230288737223098045568450, 18040038122152027196406847801531495, 26613816685337229964958263304309760, 35113995682965795830451986397081600, 43549478054218922596787103584164930], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2^5', 'pc_rank': 3, 'perfect': False, 'permutation_degree': 17, 'pgroup': 0, 'primary_abelian_invariants': [2, 4, 3], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 4], [2, 14], [4, 21], [8, 8]], 'representations': {'PC': {'code': 48576423574905449845507722643, 'gens': [1, 4, 7], 'pres': [7, -2, -2, -3, -2, -2, -3, -3, 14, 36, 3699, 80, 4204, 102, 4037, 1203]}, 'GLZN': {'d': 2, 'p': 28, 'gens': [548825, 214622, 21977, 285389, 476917, 329295, 174545]}, 'Perm': {'d': 17, 'gens': [21009968180065, 44548106843784, 518918400, 21009968179200, 1680, 403200, 3]}}, 'schur_multiplier': [2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 12], 'solvability_type': 7, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_6^2.D_6', 'transitive_degree': 48, 'wreath_data': None, 'wreath_product': False}