Query:
/api/av_fq_isog/?_offset=0
{'abvar_count': 6756, 'abvar_counts': [6756, 45643536, 326940736644, 2251895782772736, 15516041195083027236, 106890245277321364382736, 736365263311652156519574084, 5072820647883302252160000000000, 34946659039493167082457128547986916, 240747534367513536053172867561917799696], 'abvar_counts_str': '6756 45643536 326940736644 2251895782772736 15516041195083027236 106890245277321364382736 736365263311652156519574084 5072820647883302252160000000000 34946659039493167082457128547986916 240747534367513536053172867561917799696 ', 'angle_corank': 1, 'angle_rank': 1, 'angles': [0.100483150443226, 0.899516849556775], 'center_dim': 4, 'cohen_macaulay_max': 1, 'curve_count': 84, 'curve_counts': [84, 6622, 571788, 47449966, 3939040644, 326941099918, 27136050989628, 2252292387060958, 186940255267540404, 15516041202960201022], 'curve_counts_str': '84 6622 571788 47449966 3939040644 326941099918 27136050989628 2252292387060958 186940255267540404 15516041202960201022 ', 'curves': ['y^2=71*x^6+65*x^5+5*x^4+21*x^3+29*x^2+12*x+63', 'y^2=42*x^6+10*x^5+9*x^4+5*x^3+6*x^2+50*x+43', 'y^2=74*x^6+57*x^5+37*x^4+24*x^3+39*x^2+38*x+64', 'y^2=65*x^6+31*x^5+74*x^4+48*x^3+78*x^2+76*x+45', 'y^2=30*x^6+26*x^5+40*x^4+50*x^3+78*x^2+68*x+38', 'y^2=37*x^6+x^5+5*x^4+29*x^3+78*x^2+22*x+18', 'y^2=74*x^6+2*x^5+10*x^4+58*x^3+73*x^2+44*x+36', 'y^2=12*x^6+23*x^5+81*x^4+20*x^3+47*x^2+65*x+15', 'y^2=4*x^6+49*x^5+56*x^4+6*x^3+10*x^2+21*x+47', 'y^2=8*x^6+15*x^5+29*x^4+12*x^3+20*x^2+42*x+11', 'y^2=82*x^6+79*x^5+23*x^4+32*x^3+72*x^2+54*x+17', 'y^2=x^6+x^3+42', 'y^2=67*x^6+77*x^5+46*x^4+22*x^3+41*x^2+3*x+36', 'y^2=68*x^6+75*x^5+81*x^4+66*x^3+21*x^2+15*x+81', 'y^2=53*x^6+67*x^5+79*x^4+49*x^3+42*x^2+30*x+79', 'y^2=74*x^6+15*x^5+19*x^4+50*x^3+65*x^2+76*x+10', 'y^2=36*x^6+6*x^5+80*x^4+19*x^3+28*x^2+54*x+71', 'y^2=72*x^6+12*x^5+77*x^4+38*x^3+56*x^2+25*x+59', 'y^2=76*x^6+47*x^5+50*x^4+65*x^3+64*x^2+45*x+61', 'y^2=44*x^6+42*x^5+16*x^4+5*x^3+35*x^2+46*x+57', 'y^2=55*x^6+56*x^5+27*x^4+46*x^3+66*x^2+60*x+65', 'y^2=71*x^6+59*x^5+47*x^4+12*x^3+54*x^2+24*x+26', 'y^2=59*x^6+35*x^5+11*x^4+24*x^3+25*x^2+48*x+52', 'y^2=31*x^6+3*x^5+72*x^4+66*x^3+12*x^2+7*x+72', 'y^2=44*x^6+66*x^5+74*x^4+66*x^3+51*x^2+72*x+60', 'y^2=55*x^6+12*x^5+11*x^4+38*x^3+56*x^2+55*x+35', 'y^2=27*x^6+24*x^5+22*x^4+76*x^3+29*x^2+27*x+70', 'y^2=75*x^6+81*x^5+6*x^4+78*x^3+7*x^2+48*x+58', 'y^2=82*x^6+18*x^5+19*x^4+35*x^3+38*x^2+72*x+75', 'y^2=78*x^6+75*x^5+48*x^4+13*x^3+34*x^2+29*x+51', 'y^2=80*x^6+45*x^5+73*x^4+23*x^3+9*x^2+24*x+28', 'y^2=31*x^6+28*x^5+41*x^4+44*x^3+76*x^2+10*x+72', 'y^2=57*x^6+71*x^5+41*x^4+37*x^3+79*x^2+72*x+68', 'y^2=52*x^6+63*x^5+59*x^4+17*x^3+24*x^2+16*x+20', 'y^2=8*x^6+3*x^5+41*x^4+25*x^3+50*x^2+11*x+66', 'y^2=78*x^6+50*x^5+55*x^4+23*x^3+50*x^2+16*x+55', 'y^2=11*x^6+82*x^5+73*x^4+3*x^3+27*x^2+45*x+50', 'y^2=54*x^6+37*x^5+14*x^4+39*x^3+41*x^2+x+36', 'y^2=44*x^6+45*x^5+33*x^4+49*x^3+80*x^2+33*x+27', 'y^2=5*x^6+7*x^5+66*x^4+15*x^3+77*x^2+66*x+54', 'y^2=12*x^6+54*x^5+40*x^4+7*x^3+24*x^2+6*x+24', 'y^2=18*x^6+37*x^5+65*x^4+66*x^3+61*x^2+25*x+8', 'y^2=36*x^6+74*x^5+47*x^4+49*x^3+39*x^2+50*x+16', 'y^2=47*x^6+38*x^5+57*x^4+78*x^3+60*x^2+36*x+6', 'y^2=11*x^6+76*x^5+31*x^4+73*x^3+37*x^2+72*x+12', 'y^2=76*x^6+11*x^5+71*x^4+19*x^3+78*x^2+29*x+3', 'y^2=x^6+21*x^5+34*x^4+58*x^3+16*x^2+5*x+67', 'y^2=2*x^6+42*x^5+68*x^4+33*x^3+32*x^2+10*x+51', 'y^2=30*x^6+45*x^5+73*x^4+18*x^3+9*x^2+24*x+52', 'y^2=19*x^6+17*x^5+68*x^4+77*x^3+5*x^2+78*x+72', 'y^2=55*x^6+49*x^5+22*x^4+50*x^3+73*x^2+34*x+10', 'y^2=27*x^6+15*x^5+44*x^4+17*x^3+63*x^2+68*x+20', 'y^2=35*x^6+27*x^5+55*x^4+5*x^3+53*x^2+21*x+80', 'y^2=70*x^6+54*x^5+27*x^4+10*x^3+23*x^2+42*x+77', 'y^2=51*x^6+81*x^5+81*x^4+77*x^3+41*x^2+65*x+13', 'y^2=77*x^6+69*x^5+9*x^4+28*x^3+60*x^2+51*x+39', 'y^2=7*x^6+12*x^5+37*x^3+37*x+14', 'y^2=51*x^6+34*x^5+48*x^4+14*x^3+46*x^2+14*x+13', 'y^2=19*x^6+68*x^5+13*x^4+28*x^3+9*x^2+28*x+26', 'y^2=2*x^6+41*x^5+13*x^4+63*x^3+82*x^2+5*x+25', 'y^2=4*x^6+82*x^5+26*x^4+43*x^3+81*x^2+10*x+50', 'y^2=52*x^6+4*x^5+65*x^4+23*x^3+56*x^2+37*x+35', 'y^2=21*x^6+8*x^5+47*x^4+46*x^3+29*x^2+74*x+70', 'y^2=33*x^6+14*x^5+55*x^4+x^3+28*x^2+47*x+33', 'y^2=33*x^6+70*x^5+37*x^4+35*x^3+20*x^2+25*x+82', 'y^2=14*x^6+23*x^5+59*x^4+24*x^3+12*x^2+16*x+5', 'y^2=28*x^6+46*x^5+35*x^4+48*x^3+24*x^2+32*x+10', 'y^2=5*x^5+40*x^4+47*x^3+57*x^2+82*x', 'y^2=32*x^6+39*x^5+32*x^4+70*x^3+x^2+34*x+3', 'y^2=11*x^6+73*x^5+31*x^4+24*x^3+62*x^2+43*x+5', 'y^2=3*x^6+77*x^4+82*x^3+51*x^2+68*x+59', 'y^2=6*x^6+71*x^4+81*x^3+19*x^2+53*x+35', 'y^2=15*x^6+40*x^5+51*x^4+43*x^3+8*x^2+44*x+27', 'y^2=81*x^6+75*x^5+4*x^4+20*x^3+26*x^2+16*x+25', 'y^2=79*x^6+67*x^5+8*x^4+40*x^3+52*x^2+32*x+50', 'y^2=13*x^6+74*x^5+18*x^4+67*x^3+78*x^2+80*x+28', 'y^2=21*x^6+16*x^5+27*x^4+2*x^3+58*x^2+7*x+67', 'y^2=28*x^6+55*x^5+47*x^4+6*x^3+18*x^2+77*x+67', 'y^2=56*x^6+27*x^5+11*x^4+12*x^3+36*x^2+71*x+51', 'y^2=48*x^6+51*x^5+45*x^4+25*x^3+x^2+77*x+50', 'y^2=73*x^6+35*x^5+49*x^4+51*x^3+62*x^2+73*x+57', 'y^2=63*x^6+70*x^5+15*x^4+19*x^3+41*x^2+63*x+31', 'y^2=13*x^6+13*x^5+55*x^4+33*x^3+12*x^2+82*x+36', 'y^2=44*x^6+47*x^5+42*x^3+64*x^2+18*x+8', 'y^2=5*x^6+11*x^5+x^3+45*x^2+36*x+16', 'y^2=51*x^6+80*x^5+26*x^4+52*x^3+6*x^2+74*x+80', 'y^2=14*x^6+77*x^5+46*x^4+59*x^3+10*x^2+52*x+78', 'y^2=28*x^6+71*x^5+9*x^4+35*x^3+20*x^2+21*x+73', 'y^2=13*x^6+10*x^5+24*x^4+24*x^3+33*x^2+37*x+81', 'y^2=26*x^6+20*x^5+48*x^4+48*x^3+66*x^2+74*x+79', 'y^2=76*x^6+25*x^5+9*x^4+56*x^3+57*x^2+16*x+17', 'y^2=37*x^6+11*x^5+36*x^4+14*x^3+69*x^2+33*x+42', 'y^2=42*x^6+44*x^5+41*x^4+45*x^3+32*x^2+74*x+70', 'y^2=13*x^6+42*x^5+40*x^4+18*x^3+33*x^2+72*x+16', 'y^2=8*x^6+17*x^5+57*x^4+26*x^3+38*x^2+63*x+5', 'y^2=27*x^6+25*x^5+46*x^4+50*x^3+18*x^2+67*x+39', 'y^2=54*x^6+50*x^5+9*x^4+17*x^3+36*x^2+51*x+78', 'y^2=33*x^6+50*x^5+32*x^4+53*x^3+42*x^2+45*x+37', 'y^2=x^6+x^3+55', 'y^2=50*x^6+66*x^5+49*x^4+35*x^3+80*x^2+67*x+30', 'y^2=75*x^6+18*x^5+56*x^4+11*x^3+62*x^2+79*x+74', 'y^2=67*x^6+36*x^5+29*x^4+22*x^3+41*x^2+75*x+65', 'y^2=67*x^6+35*x^5+82*x^4+37*x^3+77*x^2+15*x+30', 'y^2=26*x^6+52*x^5+43*x^4+54*x^3+69*x^2+57*x+66', 'y^2=52*x^6+47*x^5+17*x^4+21*x^3+72*x^2+82*x+11', 'y^2=10*x^6+65*x^5+38*x^4+55*x^3+34*x^2+41*x+50', 'y^2=50*x^6+40*x^5+24*x^4+2*x^3+17*x^2+12*x+21', 'y^2=52*x^6+66*x^5+31*x^4+34*x^3+63*x^2+13*x+13', 'y^2=21*x^6+49*x^5+62*x^4+68*x^3+43*x^2+26*x+26', 'y^2=3*x^6+41*x^5+46*x^4+70*x^3+55*x^2+14*x+20', 'y^2=6*x^6+82*x^5+9*x^4+57*x^3+27*x^2+28*x+40', 'y^2=54*x^6+40*x^5+10*x^4+26*x^3+78*x^2+20*x+46', 'y^2=42*x^6+7*x^5+40*x^4+20*x^3+46*x^2+60*x+65', 'y^2=3*x^6+16*x^5+63*x^4+39*x^3+57*x^2+37*x+50', 'y^2=9*x^6+35*x^5+49*x^4+24*x^3+62*x^2+74*x+2', 'y^2=18*x^6+70*x^5+15*x^4+48*x^3+41*x^2+65*x+4', 'y^2=47*x^6+38*x^5+56*x^4+62*x^3+27*x^2+x+45', 'y^2=x^6+x^3+43', 'y^2=10*x^6+12*x^5+63*x^4+61*x^3+2*x^2+79*x+18', 'y^2=20*x^6+24*x^5+43*x^4+39*x^3+4*x^2+75*x+36'], 'dim1_distinct': 0, 'dim1_factors': 0, 'dim2_distinct': 1, 'dim2_factors': 1, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 12, 'g': 2, 'galois_groups': ['4T2'], 'geom_dim1_distinct': 1, 'geom_dim1_factors': 2, 'geom_dim2_distinct': 0, 'geom_dim2_factors': 0, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 2, 'geometric_extension_degree': 2, 'geometric_galois_groups': ['2T1'], 'geometric_number_fields': ['2.0.24.1'], 'geometric_splitting_field': '2.0.24.1', 'geometric_splitting_polynomials': [[6, 0, 1]], 'group_structure_count': 2, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 120, 'id': 87068, 'is_geometrically_simple': False, 'is_geometrically_squarefree': False, 'is_primitive': True, 'is_simple': True, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 120, 'label': '2.83.a_afe', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 12, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['4.0.2304.1'], 'p': 83, 'p_rank': 2, 'p_rank_deficit': 0, 'poly': [1, 0, -134, 0, 6889], 'poly_str': '1 0 -134 0 6889 ', 'primitive_models': [], 'q': 83, 'real_poly': [1, 0, -300], 'simple_distinct': ['2.83.a_afe'], 'simple_factors': ['2.83.a_afeA'], 'simple_multiplicities': [1], 'singular_primes': ['2,8*F-5*V-5', '5,-42*F+28*V+5'], 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.2304.1', 'splitting_polynomials': [[1, 0, 4, 0, 1]], 'twist_count': 6, 'twists': [['2.83.a_fe', '2.47458321.amjk_jlxngo', 4], ['2.83.ai_bg', '2.2252292232139041.nbaklg_cwkttnclftzy', 8], ['2.83.i_bg', '2.2252292232139041.nbaklg_cwkttnclftzy', 8], ['2.83.abe_ot', '2.106890007738661124410161.ezyzyadfo_ldwkjzazibjsipgjm', 12], ['2.83.be_ot', '2.106890007738661124410161.ezyzyadfo_ldwkjzazibjsipgjm', 12]], 'weak_equivalence_count': 12, 'zfv_index': 800, 'zfv_index_factorization': [[2, 5], [5, 2]], 'zfv_is_bass': True, 'zfv_is_maximal': False, 'zfv_plus_index': 10, 'zfv_plus_index_factorization': [[2, 1], [5, 1]], 'zfv_plus_norm': 1024, 'zfv_singular_count': 4, 'zfv_singular_primes': ['2,8*F-5*V-5', '5,-42*F+28*V+5']}